
Design and Development of Component-based Adaptive Web
Applications

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

M.Sc. Zoltán Fiala
geboren am 19. März 1977 in Budapest

Gutachter:

Prof. Dr.-Ing. Klaus Meißner (Technische Universität Dresden)
Prof. Dr. rer. nat. habil. Uwe Aßmann (Technische Universität Dresden)

Prof. Dr. ir. Geert-Jan Houben (Vrije Universiteit Brussel)

Tag der Verteidigung: 19. Februar 2007

Dresden im Februar 2007

2 c© Copyright TU Dresden, Zoltán Fiala

Summary

The WWW is rapidly evolving to a ubiquitous information and application medium. Formerly
a collection of static HTML pages, today’s Web sites are complex Web Information Systems
offering large amounts of content and functionality. Their growing audience is characterized
by heterogeneous goals, preferences, and capabilities. Furthermore, people access the Web
from a diversity of locations and devices. These trends necessitate adaptive Web sites that
automatically adjust their content, navigation, and presentation to their usage context.

This need for adaptation implies additional requirements for the already complex devel-
opment process of Web applications. Still, even though current Web design methods already
address limited adaptation issues at design time, existing Web document formats do not
provide a sufficient implementation base for structured adaptation engineering. The missing
support for a clear separation of different application and adaptation concerns prevents the
efficient reuse of configurable implementation artefacts for different platforms and contexts.

This dissertation addresses the aforementioned shortcomings by combining the benefits of
model-based Web design methods with the advantages of component-based implementation
techniques for efficiently engineering adaptive Web sites. The main goal is the intuitive
composition of context-dependent Web applications from declarative, reusable, and adaptable
components, aided by a systematic development process and appropriate tool support.

After a thorough review of related Web engineering approaches, a novel, concern-oriented
component model is presented for adaptive Web applications. It is based on the notion of
declarative document components that encapsulate separate application and adaptation as-
pects (e.g. content, structure, navigation, semantics, presentation) on different abstraction
levels. Document components contain inherent adaptation rules, allowing to realize numer-
ous hypermedia adaptation techniques. Composed to complex document structures, they
can be automatically published to different output formats and client platforms, adapted
to the current usage context. For the systematic development of component-based adaptive
Web applications a multi-stage, model-based authoring process and a visual authoring tool
are presented. The resulting engineering process supports different kinds of static and dy-
namic adaptation at both design and implementation level. Its practical applicability for the
systematic development of dynamic multimedia Web Information Systems is demonstrated
and thus constructively validated by a number of application prototypes. Finally, it is inves-
tigated how the lessons learned from authoring component-based adaptive Web applications
can be applied to adapt already existing legacy Web-based systems. As a generalization of
the proposed component-based approach, the Generic Adaptation Component is presented
for decoupling and adding selected adaptation concerns to XML-based Web applications.

3

4 c© Copyright TU Dresden, Zoltán Fiala

Acknowledgments

First of all, I would like to thank my advisor, Prof. Dr.-Ing. Klaus Meißner, for supervising
and reviewing this dissertation. I thank him for his overall support throughout the last years
and the opportunity to research and teach at the Multimedia Technology Group.

Second, I would like to thank Prof. Dr. ir. Geert-Jan Houben for the fruitful collaboration
we had and for his readiness to review this thesis. The cooperation with him was a great
source of inspiration for this work, leading to valuable discussions, new research ideas, and
joint publications.

Third, I would like to thank Prof. Dr. rer. nat. habil. Uwe Aßmann for being a reviewer
of the thesis. I benefited a lot from our discussions on component technology, as well as his
valuable comments and remarks.

Special thanks go out to the whole Multimedia Technology Group. Most particularly, I
would like to thank Michael Hinz for the pleasant and fruitful cooperation in the AMACONT
project, Frank Wehner and Raimund Dachselt for countless research discussions and com-
ments regarding this work, and Annett Mitschick for thoroughly reading and commenting
parts of the thesis. Furthermore, I thank Ramona Behling and Udo Wähner for providing
the administrative and technical background of my research work.

I also would like to thank all students who contributed to the implementation of the
concepts described in this thesis. Especially, I would like to mention Matthias Niederhausen,
Vincent Tietz, and Norbert Kopcsek.

I had a very fruitful collaboration with members of the Hera research group from the
Technische Universiteit Eindhoven and the Vrije Universiteit Brussel: Flavius Frasincar, Sven
Casteleyn, Kees van der Sluijs, and Peter Barna.

Finally, I thank József Váradi for polishing the English language used in this work as a
native speaker.

5

6 c© Copyright TU Dresden, Zoltán Fiala

Contents

1 Introduction 17
1.1 Background and Motivation . 17
1.2 Problems, Theses, and Research Goals . 20
1.3 Outline of the Dissertation . 22
1.4 Writing Conventions . 24

2 Adaptive Hypermedia and Web-based Systems 25
2.1 Hypermedia and Web-based Systems . 25

2.1.1 Definitions . 25
2.1.2 The Dexter Reference Model . 26
2.1.3 The World Wide Web as a Hypermedia System 28

2.2 Adaptive Hypermedia and Web-based Systems 29
2.2.1 Definitions . 29
2.2.2 Adapting to what? . 30
2.2.3 What can be adapted? . 32
2.2.4 Application areas of AHS . 33
2.2.5 The AHAM Reference Model . 36

2.3 Summary . 38

3 Development of Adaptive Web Applications: State of the Art 39
3.1 Overview of the Overall Web Engineering Life-Cycle 40
3.2 Component-based and Document-oriented Approaches 43

3.2.1 WebComposition Component Model 43
3.2.2 HMDoc . 44
3.2.3 Intensional Hypertext . 45
3.2.4 CONTIGRA . 46
3.2.5 CHAMELEON . 47
3.2.6 RIML . 49
3.2.7 The XiMPF document model . 50
3.2.8 Portlets as Portal Components . 51
3.2.9 Active Documents . 52
3.2.10 Summary and Comparison . 54

3.3 Model-based Web Design Methods . 55
3.3.1 Relationship Management Methodology (RMM) 57

7

Contents

3.3.2 Object-Oriented Hypermedia Design Method (OOHDM) 58
3.3.3 Web Site Design Method (WSDM) . 59
3.3.4 WebML . 61
3.3.5 Hera . 63

3.4 Discussion . 64

4 A Concern-Oriented Component Model for Adaptive Web Applications 67
4.1 Declarative Document Components . 68
4.2 A Component-based Document Model and its XML Description Language . . 69

4.2.1 Media Components . 70
4.2.2 Content Unit Components . 71
4.2.3 Document Components . 72
4.2.4 Hyperlink Components . 73

4.3 Adaptation Support . 74
4.3.1 Describing Adaptation Variants . 76
4.3.2 Describing Adaptive Layout . 79

4.4 Document Component Templates . 82
4.5 Document Generation . 85

4.5.1 Pipeline-based Document Generation 85
4.5.2 The Context Model . 86
4.5.3 Support for Context Modeling and Interaction Processing 88

4.6 Summary and Model Benefits . 90
4.6.1 The Component Model vs. Dexter and AHAM 91
4.6.2 Support for Component Reuse and Configurability 91
4.6.3 Extensibility Support . 92
4.6.4 Adaptation Support . 92
4.6.5 Support for Web Annotations . 94

5 The Authoring Process and its Tool Support 95
5.1 Hera-AMACONT: Model-based Component Development based on a Hyper-

media Design Method . 96
5.1.1 Conceptual Design . 97
5.1.2 Realization with Document Components 99
5.1.3 Application Design . 99
5.1.4 Realization with Document Components 101
5.1.5 Presentation Design . 104
5.1.6 Realization with Document Components 106
5.1.7 Summary . 107

5.2 A Modular Authoring Tool for Component-based Adaptive Web Applications 108
5.2.1 AMACONTBuilder: An Overview . 110
5.2.2 Editors for Content Authoring . 111
5.2.3 Editors for Hypertext Authoring . 113
5.2.4 Editors for Presentation Authoring . 117

8 c© Copyright TU Dresden, Zoltán Fiala

Contents

5.2.5 The XML editor . 118
5.2.6 Implementation Issues . 119

5.3 From Component Authoring Towards Model-Driven WIS Generation 121
5.3.1 RDFS-based Specification of the Hera-AMACONT PM 122
5.3.2 Automatic Generation of a Component-based Implementation 125
5.3.3 Adaptivity Support . 128

5.4 Summary and Realized Applications . 130
5.4.1 Summary of the Multi-stage Development Process 130
5.4.2 Realized Applications . 133

6 A Generic Transcoding Tool for Making Web Applications Adaptive 137
6.1 Motivation and Introduction . 137
6.2 Existing Web Transcoding Solutions . 140
6.3 GAC: Generic Adaptation Component . 141

6.3.1 GAC Overview . 141
6.3.2 Possible Application Scenarios . 141
6.3.3 Running Example Overview . 144

6.4 GAC Configuration . 145
6.4.1 Input Data Requirements . 145
6.4.2 Adaptation Context Data . 147
6.4.3 The Rule-based GAC Configuration Language 147
6.4.4 Adaptation Rules . 147
6.4.5 Update Rules . 154

6.5 Implementation Issues . 155
6.5.1 Running Example Implementation Configuration 157
6.5.2 Extensibility Issues . 158

6.6 Conclusion and Discussion . 159

7 Conclusion and Future Work 165
7.1 Summary of the Chapters and their Contributions 165
7.2 Discussion . 168

7.2.1 Scientific Contributions . 169
7.2.2 Limitations and Boundaries . 169

7.3 Future Work . 170

References 193

List of Publications 196

List of Abbreviations 198

Index 203

c© Copyright TU Dresden, Zoltán Fiala 9

Contents

10 c© Copyright TU Dresden, Zoltán Fiala

List of Figures

2.1 The Dexter reference model [Halasz and Schwartz 1994] 27
2.2 The AHAM reference model [De Bra et al. 1999] 37

3.1 Basic structure of an HMDoc hyperdocument [Westbomke and Dittrich 2002] 45
3.2 Overview of the CONTIGRA markup languages [Dachselt 2004] 47
3.3 Overview of the TeachML document model [@CHAMELEON] 48
3.4 Schematic outline of an XiMPF document [Hendrickx et al. 2005] 51
3.5 OOHDM/SHDM overview . 58
3.6 WSDM overview . 60
3.7 WebRatio site view example [@WebRatio] . 62

4.1 A concern-oriented component model for adaptive Web sites [Fiala et al. 2003a] 70
4.2 Abstract layout managers . 80
4.3 Overview of the document generation architecture 86

5.1 CM example [Fiala et al. 2004a] . 98
5.2 MM example [Fiala et al. 2004a] . 98
5.3 AM example . 100
5.4 AM example with appearance conditions . 102
5.5 Slice to component template mapping . 103
5.6 Presentation diagram (PD) example: assigning regions to slices 104
5.7 AMACONTBuilder overview [Fiala et al. 2005] 110
5.8 Image editor . 112
5.9 Defining adaptation conditions with the profile browser 112
5.10 Template editor for image components . 113
5.11 Structure editor . 114
5.12 The subcomponent editor . 115
5.13 The graph editor . 116
5.14 Layout editor . 118
5.15 AMACONTBuilder object model . 120
5.16 A Hera-AMACONT PM example [Fiala et al. 2004a] 123
5.17 Model-driven WIS generation process overview 125
5.18 Component configuration and publication . 126
5.19 Generated hypermedia presentation [Fiala et al. 2004a] 128
5.20 Presentation layer adaptivity . 130

11

List of Figures

5.21 Overview of the multi-stage development process 131
5.22 Component-based MMT homepage prototype 134
5.23 SoundNexus prototype . 135
5.24 AWIS for presenting student works . 136

6.1 WIS implementation based on data transformations 138
6.2 WIS implementation with adaptation . 138
6.3 WIS implementation based on generic adaptation modules 139
6.4 GAC abstract system overview . 141
6.5 GAC scenario 1. - Transcoding static XHTML 142
6.6 GAC scenario 2. - Adaptive WIS front-end 142
6.7 GAC scenario 3. - Adaptive WIS based on GAC pipeline 143
6.8 GAC scenario 4. - Separation of concerns with multiple GACs 143
6.9 GAC scenario 5. - Support for adaptivity . 144
6.10 GAC running example overview . 145
6.11 GAC rule schema excerpt . 148
6.12 GAC implementation overview. 157
6.13 Running example implementation configuration. 158
6.14 Running example screenshots . 159

12 c© Copyright TU Dresden, Zoltán Fiala

List of Tables

3.1 Comparison of component-based and document-centric solutions 56

4.1 BoxLayout attributes [Fiala et al. 2004a] . 80

5.1 Summary of design and implementation phases 108
5.2 Adaptability/adaptivity across the design and implementation phases 129

6.1 Properties of an adaptation rule . 148
6.2 Properties of an inclusion rule . 151
6.3 Properties of an attribute inclusion rule . 151
6.4 Properties of a replacement rule . 152
6.5 Properties of a code replacement rule . 152
6.6 Properties of a link wrapper rule . 153
6.7 Properties of a sorting rule . 153
6.8 Properties of a paginator rule . 154
6.9 Properties of an update rule . 155

13

List of Tables

14 c© Copyright TU Dresden, Zoltán Fiala

List of Source Code Examples

4.1 Simple media component example . 71
4.2 Simple content unit example . 72
4.3 Document component composition example 73
4.4 Link component example . 75
4.5 Describing adaptive variants . 77
4.6 Describing adaptation variants (Example 2) 78
4.7 Context parameter substitution example . 79
4.8 Layout manager example . 81
4.9 Combined context dependent layout adaptation 82
4.10 Simple component template example . 83
4.11 Iterative component template example . 84
4.12 Extract from an example context model . 88
5.1 Assignment of an editor module to a component type 120
5.2 Layout assignment to a slice . 122
5.3 High-level BoxLayout definition example . 124
5.4 Layout assignment to Set elements . 124
5.5 High-level GridTableLayout definition example 124
6.1 GAC input content example . 146
6.2 Appearance rule example . 149
6.3 Appearance rule example Nr. 2 . 150
6.4 Element filter rule example . 150
6.5 Inclusion rule example . 151
6.6 Replacement rule example . 151
6.7 Link wrapper rule example . 152
6.8 Sorting rule example . 154
6.9 Update rule example . 155
6.10 Interplay of update rules and adaptation rules 156

15

List of Source Code Examples

16 c© Copyright TU Dresden, Zoltán Fiala

Chapter 1

Introduction

“The reasonable man adapts himself to the world; the unreasonable one persists in
trying to adapt the world to himself. Therefore all progress depends on the unreasonable
man.”1

1.1 Background and Motivation

Since the emergence of the World Wide Web (WWW), the size of its audience and the amount
of information published on it have grown enormously. The survey “How much information?”,
carried out in the end of 2003 at the University of California at Berkeley, reports of an In-
ternet community counting more than 600 million members, 167 Terabytes of published Web
content, and prognosticates an annual doubling for the future [Lyman et al. 2003]. Another
important trend is the Web’s evolution from a simple presentation medium to a dynamic
medium of interaction and communication. Whereas the first Web sites consisted of a small
collection of HTML pages presenting mainly static content, today’s sites act as complex Web
Information Systems (WIS) that provide both up-to-date information and functionality. It
is no exaggeration to claim that the World Wide Web has changed the way of accessing and
processing information fundamentally. Meanwhile, it offers electronic services in a number of
different application areas, among them the press, education, culture, entertainment, tourism,
commerce, administration, etc.

This heterogeneity characterizes not only the application areas of the WWW, but also
its growing community. Even though originally developed for the academic field, the Web
has quickly found its way to the general public. Today’s Web users significantly differ in
age, education, preferences, interests, capabilities, cultural background, etc. Furthermore,
they access the Web from a growing diversity of locations and client devices. Besides tra-
ditional desktop computers and Web browsers, the usage of mobile appliances (e.g. smart
phones, PDAs, notebooks, set top boxes) is rapidly increasing, each provided with different
presentation, communication, and interaction features.

These trends necessitate the appropriate selection, generation, and delivery of up-to-date
information that is automatically adjusted to the user, the capabilities of his client device,
and his entire usage context. The result is adaptive Web sites: sites that are customized
(personalized) to better meet the specific requirements, preferences, and characteristics of
their audience. Typically, this customization needs to concern different aspects of a Web
application: the data it presents, the navigational structure and it offers on top of this data
in terms of interlinked Web pages, and the visual presentation of those Web pages. To
efficiently cope with this multitude of adaptation issues has become a significant challenge

1George Bernard Shaw (1856 - 1950), Man and Superman (1903), Maxims for Revolutionists

17

Chapter 1. Introduction

for today’s Web site providers and developers. It implies additional costs and efforts in the
design, implementation, and maintenance of Web information systems.

The development of early Web-based systems was typically characterized by the ad hoc au-
thoring of (mainly static) Web documents. Still, the growing complexity of Web applications
has soon made clear that such a straightforward approach is not sufficient when creating and
maintaining complex Web sites. The recently emerged Web engineering research field tackles
this problem by the “establishment and use of sound scientific, engineering and management
principles” to Web site development [Murugesan and Deshpande 2001]. Inspired by the prin-
ciples of traditional software engineering, Web engineering aims at adopting its well-proven
methods and concepts to the specific characteristics of Web-based systems. Furthermore, trig-
gered by the aforementioned demand for personalization and device independence, it places
an increasing emphasis on considering the specific requirements for engineering adaptive Web
sites. This additional consideration of adaptation (adaptation engineering) concerns different
phases of a Web application’s overall life-cycle: its design, implementation, publication, main-
tenance, testing, evolution, etc. Furthermore, besides the structured development of “new”
adaptive Web sites, a research question gaining always more importance is how already ex-
isting Web information systems can be extended with additional adaptation functionality.

A basic observation in the Web engineering field was that Web-based applications lack-
ing a systematic underlying design suffer from enormous usability and manageability prob-
lems [Murugesan et al. 2001]. Thus, in the last decade, several Web design methods have
been proposed by academia (RMM [Isakowitz et al. 1995], OOHDM [Schwabe et al. 1996],
WebML [Ceri et al. 2000], WSDM [De Troyer 2001], Hera [Vdovjak et al. 2003], etc.). Their
main goal is to simplify the development of Web sites by abstracting from the implementation
and separately considering different design aspects. While applying different techniques and
notations, a common characteristic of all design methods is to distinguish between a data,
a navigation, and a presentation design. Selected methods (e.g. OOHDM, WebML, WSDM,
Hera) also offer some support for personalization and adaptation at design-level. However,
the provided adaptation is mostly centered around certain content and navigation adaptation
aspects. Important context-dependency issues, such as media adaptation or (dynamic) adap-
tation at presentation design have not been sufficiently addressed, yet. Moreover, there is
only limited tool support for the visual specification of adaptation and the (semi-)automatic
generation of a corresponding adaptive implementation. Furthermore, no design method
facilitates the extension of an already existing Web application with additional adaptation
concerns.

Another important and yet not sufficiently addressed shortcoming is the current coarse-
grained implementation model of the WWW. While it is well-suited for easy authoring and
straightforward publication of documents, it is obviously not a sufficient implementation
base for structured Web engineering approaches [Gaedke et al. 2000]. Though some of the
aforementioned Web design methods provide a (semi-)automatic implementation generation,
fine-granular semantic, navigational, and presentational design elements get lost during the
implementation phase while being transformed into (X)HTML, cHTML, WML documents,
etc. These document formats have significant disadvantages concerning their applicability
for implementing and managing adaptive, dynamic Web information systems. The missing
separation of content, layout, and structure prevents to uniformly create, update, and reuse
content for different user preferences and platforms [Gellersen et al. 1997]. Furthermore, no
mechanisms are provided to describe the adaptive behavior of reusable content pieces (Web
code) in a generic way. This lack of structure and configurability in Web application code
prevents the reuse of independent, configurable, and adaptable implementation artefacts both

18 c© Copyright TU Dresden, Zoltán Fiala

1.1. Background and Motivation

within an application and for other applications and target systems. As a consequence, most
Web site providers today use to create and manage Web code for different platforms and
usage contexts separately.

At the same time, the efficient reuse of application code is a main task of traditional soft-
ware technology, and has already been successfully addressed by component-based software
engineering (CBSE [Szyperski 1998]). The advantages of component models are numerous:
reusability, system-independence, configurability, flexibility, composability, etc. Traditional
component models consider components as binary units of composition, mostly based on
imperative programming languages. Still, in the recent years different approaches have been
proposed to apply their principles to the document-centric nature of Web and multimedia
applications [Gellersen et al. 1997, Aßmann 2005]. Meanwhile, there exist a number of struc-
tured, declarative, component-based document formats for different application areas, such
as hypermedia presentations (HMDoc [Westbomke 2001]), Web applications (WebComposi-
tion [Gaedke et al. 2000]), eLearning applications (CHAMELEON [Wehner and Lorz 2001])
or even for Web-based three-dimensional user interfaces (CONTIGRA [Dachselt et al. 2002]).
Still, even though all these approaches benefit from the reuse of declarative and configurable
implementation artefacts in a component-like manner, none of them provides support for the
aforementioned adaptation issues, such as device-independence, personalization, or localiza-
tion. Moreover, there is a lack of solutions for the automatic generation of a component-based
implementation based on high-level Web design specifications.

To fill this gap, the approach proposed in this dissertation focuses on the component-
based development of adaptive Web applications. The vision is the intuitive composition
of personalized, device-independent Web presentations from declarative, reusable, and adap-
tive “building blocks” (components), aided by a structured design and development process.
In order to fulfill this vision, this thesis proposes a concern-oriented component model for
adaptive Web applications2,3. It is based on the notion of declarative document components
that encapsulate separate application aspects on different abstraction levels and can be auto-
matically adjusted to varying user preferences and client platforms. For the development of
component-based adaptive Web documents a structured multi-stage, model-based authoring
process is presented. Distinguishing between different phases of design and component-based
implementation, it allows component authors to systematically take into account various
application and adaptation concerns. The intuitive creation and composition of document
components is supported by a visual authoring tool. What more, it is illustrated how a
component-based implementation can be automatically generated from a high-level design
specification in a model-driven way, allowing to add automation to the overall process of
design and implementation. The resulting development process supports different kinds of
content, navigation, and presentation layer adaptation, and is demonstrated by a number
of representative examples. Finally, it is shown how the lessons learned from authoring
component-based adaptive Web applications can be generalized in order to add adaptation
to existing (not component-based) Web applications.

As its main benefit, the proposed approach enables Web engineers to efficiently develop
adaptive Web applications from reusable components, by systematically taking into account
different application and adaptation concerns from design to implementation. According to

2The component model presented in this dissertation was developed within the scope of the AMACONT
research project [@AMACONT] and is also often referred to as the AMACONT component model. The thesis
presents the author’s contributions to the model, based on requirements towards the efficient authoring of
adaptive Web applications from reusable components.

3The term concern-oriented denotes the model’s support for the clear separation of concerns involved in
a Web application, each being dealt with on different component levels.

c© Copyright TU Dresden, Zoltán Fiala 19

Chapter 1. Introduction

our best knowledge, it is the first development method for personalized, context-adaptive
Web applications that combines the advantages of model-based Web design methodologies
(e.g. high-level specification, thorough separation of design concerns, etc.) with the benefits
of a component-based implementation techniques (such as reusability, configurability, or self-
adaptation). To achieve this overall goal, a number of scientific contributions are provided,
among them the design of a novel-component model for adaptive Web applications, its com-
bination with a model-based Web design method, the provision of design-time support for
presentation layer adaptation, as well as a means for easily adding adaptation to existing
Web presentations.

1.2 Problems, Theses, and Research Goals

After outlining the research context and the main vision of this dissertation, this section re-
capitulates the concrete problems to be solved and derives research theses and goals resulting
from them. First, the main shortcomings to be addressed are comprised:

Problems

• The development of adaptive Web applications requires significantly higher efforts com-
pared to non-adaptive Web-based systems, there are lacking design guidelines and
hardly any reuse concepts. The consideration and realization of different adaptation
aspects (personalization, device independence, localisation, etc.) is a great challenge in
designing, implementing, and maintaining Web sites.

• Current Web document formats are not suitable for developing personalized, device
independent Web applications. The coarse-grained implementation model of the WWW
prevents the efficient reuse of fine-granular implementation artefacts in a component-
wise manner. Furthermore, there is a lack of mechanisms for describing the adaptive
behavior of reusable content pieces (Web code) in a generic way.

• Due to their lacking support for adaptation, existing authoring tools for engineering
dynamic Web applications are not suitable for personalized, device independent appli-
cations

• Existing authoring tools for adaptive hypermedia and Web-based systems are mostly
restricted to the abstract level of conceptual modeling, not allowing for the visual
creation of reusable adaptive implementation artefacts.

• Current design models for hypermedia and Web applications are only inadequately
suitable for the specification of personalized ubiquitous Web applications. They do
not provide sufficient support for specifying important concerns such as adaptation at
presentation design or dynamic adaptation.

• There is a lack of solutions allowing for translating high-level design artefacts to an
adaptive implementation layer in a model-driven way, thus adding automation to the
overall development process of dynamic adaptive Web applications.

• Current solutions for engineering adaptive hypermedia and Web-based applications
assume their development “from scratch”. There is no sufficient support (neither at
design nor at implementation level) for easily adding adaptation to an existing Web
application.

20 c© Copyright TU Dresden, Zoltán Fiala

1.2. Problems, Theses, and Research Goals

Theses

Based by these shortcomings and the situation of this dissertation in the research context,
the following list comprises the main research theses behind the proposed approach. These
theses also serve as the motivation of this work.

• Declarative component-based XML document formats combined with visual authoring
tools are well applicable for engineering Web-based multimedia applications, among
them personalized adaptive Web presentations. Still, existing component-based formats
do not provide sufficient support for adaptive Web applications.

• The development process of component-based adaptive Web applications has to be
based on a structured design and authoring process that is aided by appropriate au-
thoring tools. These have to support a strict separation of concerns as well as varying
aspects of adaptation in all different authoring steps.

• The combination of formalized, high-level design models with declarative, component-
based document formats allows to automate the overall process of designing and imple-
menting adaptive Web sites in a model-driven way.

• Adaptive Web Information Systems (AWIS) can be reduced to a series of data transfor-
mations. Furthermore, major parts of the adaptation-specific data transformations can
be clearly separated from the rest of a Web application. Thus, the mechanisms for re-
alizing adaptation in component-based Web applications can be generalized for adding
adaptation to existing XML-based Web applications by using generic transcoding tools.

• Based on a declarative rule language, such generic adaptation components can be eas-
ily configured to implement various kinds of adaptation in existing Web Information
Systems.

Research Goals

Triggered by the outlined shortcomings and theses, the vision of this dissertation is the
efficient component-based development of adaptive Web applications in combination with
a structured, model-based authoring process as well as visual authoring tools. In order to
fulfill this vision and to elaborate the proposed theses, the following research goals have to
be accomplished within the scope of this work:

• Design of a novel, XML-based, concern-oriented component model for engineering dy-
namic adaptive Web applications. Compact introduction and overview of the model’s
language constructs, its XML-based description language, as well as its selected benefits.

• Design of a structured authoring process for the component-based development adaptive
Web sites. Adoption of the model-based Hera design method for engineering data-driven
Web Information Systems from declarative document components. Explanation of the
resulting Hera-AMACONT4 methodology based on a running example.

• Design and prototypical implementation of a visual authoring tool called AMACONT-
Builder for component-based adaptive Web applications. Compact introduction of its
basic concepts and main modules from the author’s point of view.

4Note that the work described in this dissertation was carried out as part of the AMACONT research
project [@AMACONT].

c© Copyright TU Dresden, Zoltán Fiala 21

Chapter 1. Introduction

• Design and prototypical implementation of a solution for the model-driven genera-
tion of component-based adaptive Web presentations. RDF(S)-based formalization of
the presentation design phase of the Hera-AMACONT methodology. Realization of a
model-driven transformation architecture for automatically translating high-level de-
sign artefacts to a component-based implementation supporting different aspects of
static and dynamic adaptation.

• Design and implementation of mechanisms for separating adaptation-specific transfor-
mations from adaptive Web applications. Development of the GAC (Generic Adapta-
tion Component), a generic transcoding component for making existing Web applica-
tions adaptable and adaptive.

• Specification of an RDF-based declarative GAC configuration language for the applica-
tion-independent definition of adaptation and context data rules. Implementation of
the GAC as well as demonstration of its main functionality by adding adaptation to an
existing Web application.

1.3 Outline of the Dissertation

The rest of the dissertation is structured as follows.

Chapter 2 - Adaptive Hypermedia and Web-based Systems

Chapter 2 provides a short introduction to adaptive hypermedia and Web-based applications.
Basic definitions are provided as well as main application areas, methods, and techniques of
hypermedia adaptation are summarized. Furthermore, existing reference models for adaptive
hypermedia and Web applications are described.

Chapter 3 - Development of Adaptive Web Applications: State of the Art

Chapter 3 deals with the development of adaptive Web applications and covers existing work
on related Web engineering approaches. A main focus is on component-based and document-
oriented approaches aiming at the implementation of multimedia and Web applications from
declarative reusable implementation entities. Furthermore, model-based approaches support-
ing the structured design and development of hypermedia and Web-based systems are also
discussed in detail. While examining related work, a special focus is on the question of how
adaptation and personalization are supported. Limitations of existing approaches are ob-
served as well as additional requirements for the development of adaptive Web-based systems
are identified and discussed.

Chapter 4 - A Concern-Oriented Component Model for Adaptive Web Applica-
tions

Chapter 4 presents a concern-oriented component model for dynamic adaptive Web appli-
cations. The concept of declarative adaptable document components is introduced, and
a corresponding XML-based component description language is presented. The document
model enables to encapsulate adaptable content to document components on different levels
of abstraction and provides support for describing both their adaptive behavior and adaptive

22 c© Copyright TU Dresden, Zoltán Fiala

1.3. Outline of the Dissertation

presentation layout. Furthermore, the concept of dynamic component templates is intro-
duced, allowing to realize data-driven adaptive Web presentations. For the on-the-fly pub-
lishing of component-based adaptive Web applications a pipeline-based document generator
is presented. Finally, significant model benefits are mentioned.

Chapter 5 - The Authoring Process and its Tool Support

Chapter 5 deals with the authoring process of component-based adaptive Web applications.
Different application areas and possible process models are discussed, but the main focus is
on the structured development of data-driven adaptive Web presentations. For this purpose
the model-based Hera design method [Vdovjak et al. 2003] is adopted and extended to the
context of component-based Web engineering, resulting in the so-called Hera-AMACONT
methodology. Considering the different design steps identified by Hera-AMACONT as a
guideline, it is shown how component authors can systematically create, configure, aggregate,
and interlink document components to complex adaptive Web presentations.

As a flexible authoring tool for component developers the AMACONTBuilder is intro-
duced. Based on an extensible set of graphical editor modules, it allows to create adaptive
document components (and templates) on different abstraction levels. The tool is shown to
facilitate different authoring scenarios, as it is independent of any one specific methodology.
Furthermore, selected implementation and extensibility issues are also briefly presented.

While the AMACONTBuilder facilitates flexible component authoring (implementation)
independent of a specific design method, in some cases it is desirable to add automation
to the overall process of design and implementation. Therefore, Chapter 5.3 deals with the
research question of how high-level design specifications can be automatically translated to a
component-based adaptive Web presentation in a model-driven way. After identifying main
automation requirements, an RDF(S)-based formalization of the presentation design phase of
the Hera-AMACONT methodology is proposed. According to this formalization, high-level
model specifications can be automatically mapped to a component-based implementation,
thus exploiting its flexible presentation and adaptation capabilities. The resulting multi-
stage hypermedia generation process is exemplified by a prototype application.

Chapter 6 - A Generic Transcoding Tool for Making Web Applications Adaptive

The combination of the component-based document format with an authoring process rely-
ing on a structured design method provides an efficient framework for developing adaptive
Web-based systems. Still, the resulting engineering process assumes to build adaptive Web
applications “from scratch”, not providing support for developers aimed at adding adapta-
tion to already existing applications. Therefore, Chapter 6 addresses the research question of
how the lessons learned from developing component-based adaptive Web presentations can
be generalized for extending a broader range of Web presentations with additional adapta-
tion functionality. For this purpose a flexible transcoding tool called the Generic Adaptation
Component (GAC) is introduced. Configured by an RDF-based rule language, it allows the
addition of both static and dynamic adaptation to Web presentations. To prove the concept’s
feasibility, it is shown how GACs can be configured to add adaptation to an existing Web
application.

c© Copyright TU Dresden, Zoltán Fiala 23

Chapter 1. Introduction

Chapter 7 - Conclusion and Future Work

Chapter 7 provides a summary of the thesis and outlines its main contributions, achievements,
but also its boundaries and limitations. Furthermore, possible extensions as well as targeted
future work are discussed.

1.4 Writing Conventions

When reading this dissertation, following issues concerning the writing style should be taken
into account:

• Some of the names of companies and/or products mentioned in this dissertation are
registered trademarks. They are used without any warranty and are not explicitly
marked in the text.

• Whenever a new (technical) term is mentioned or introduced in the thesis, its first
occurrence is made stand out by using italics. Any further occurrences are not explicitly
emphasized.

• Often-used abbreviations are listed and resolved in the Table of Abbreviations at the
end of the dissertation.

• All cited literature references can be found in the Bibliography at the end of the thesis.
References to Web sites of companies, products, projects, and prototype demonstrators
are labeled by an additional @ prefix, e.g. [@AMACONT].

• At the end of the dissertation, there is an Index of the most important terms, concepts,
and names.

• Listings and source code snippets are presented with numbered lines with syntax high-
lighting. Whenever there are deviations between the presented source code examples
and their original form (e.g. for the sake of better readability or understandability),
these differences are explicitly mentioned. A list of all source examples can be found at
the beginning of the dissertation.

• The figures and tables presented in this dissertation were either created by the author,
or their origin is explicitly mentioned (e.g. by an explicit remark in the text or the
appropriate literature reference to their source). A list of all figures (List of Figures)
and tables (List of Tables) can be found at the beginning of the dissertation.

24 c© Copyright TU Dresden, Zoltán Fiala

Chapter 2

Adaptive Hypermedia and Web-based Systems

“The human mind (. . .) operates by association. With one item in its grasp, it snaps
instantly to the next that is suggested by the association of thoughts, in accordance with
some intricate web of trails carried by the cells of the brain.”1

While Chapter 1 introduced the main goals and the outline of this thesis, the aim of
this chapter is to provide background knowledge on adaptive hypermedia and Web-based
systems. First, Section 2.1 gives a short overview to hypermedia. It states basic definitions
and presents the Dexter reference model. Then, Section 2.2 provides an introduction to the
field of adaptive hypermedia and Web-based systems. Again, main definitions are presented,
and the most important methods, techniques, and application areas of hypermedia adapta-
tion are described. Finally, the AHAM reference model for adaptive hypermedia systems is
summarized. The presented definitions, taxonomies, and reference models provide necessary
background information that will be often referred to in the subsequent chapters.

2.1 Hypermedia and Web-based Systems

2.1.1 Definitions

The emergence of the notion of hypermedia can be traced back to 1945, when Vannevar Bush
published his paper entitled “As We May Think” [Bush 1945]. In that paper he pointed
out the shortcomings of linear information indexing systems and envisioned a device called
memex . A memex is a tool that allows users to store textual information (books, notes,
communications) and to add at any arbitrary location a pointer to another piece of text.
This non-linear structuring of text would facilitate a more efficient management of information
based on associations.

The vision of Bush inspired a number of researchers, among them Ted Nelson, who
firstly used the term “hypertext”. He was the creator of Xanadu [Nelson 1965], a system
aimed at versioning documents and creating non-linear associations between pieces of text.
In [Nelson 1987] he defines the terms hypertext and hypermedia as follows:

Definition 2.1 (Hypertext) “I mean non-sequential writing - text that branches and allows
choices to the reader,. . . this is a series of text chunks connected by links which offer the reader
different pathways. . . ”

Definition 2.2 (Hypermedia) “Hypermedia simply extends the notion of the text in hy-
pertext by including visual information, sound animation and other forms of data. . . ”

1Vannevar Bush (1890-1974), “As We May Think”, The Atlantic Monthly (1945) [Bush 1945]

25

Chapter 2. Adaptive Hypermedia and Web-based Systems

According to these definitions, a hypertext (or hypermedia) system organizes its informa-
tion as a set of nodes, i.e. units of information that contain textual or media content. Nodes
are interconnected by pointers (links) and can thus be traversed in a non-linear order. As
a more technical and also widely referenced definition focusing on the dynamic nature of
hypertext from a database perspective, we mention the one from Shneiderman and Kears-
ley [Shneiderman and Kearsley 1989]:

Definition 2.3 (Hypertext) “. . . a database that has active cross-references and allows the
reader to ”jump” to other parts of the database as desired”.

In the last decades a large number of hypertext and hypermedia systems have been in-
troduced. Among the best known and most popular historical approaches we mention Note-
card [Halasz 1987], Hyperties [Shneiderman 1987], Intermedia [Yankelovich et al. 1988], and
HyperCard [Goodman 1987]2. Still, it was the World Wide Web [Berners-Lee et al. 1992]
that made the concept of hypertext known and available for the general public, thus becom-
ing without doubt the most widespread hypermedia system. Before turning to the specifics
of the World Wide Web as a hypermedia system in Section 2.1.3, the next section introduces
Dexter, a reference model attempting to identify the most common features of hypermedia
systems.

2.1.2 The Dexter Reference Model

The objectives of hypertext or hypermedia reference models are “to capture important ab-
stractions found in current hypermedia applications, to describe their basic concepts, to
provide a basis to compare the systems, and to develop a standard” [Koch 2001]. Recently,
different reference models for hypermedia applications have been proposed. As one of the first
and without doubt the most widely referenced model we will discuss in more detail the Dexter
model [Halasz and Schwartz 1994], but point out that there are also other approaches, such as
Trellis [Furuta and Stotts 1989], the Devise Hypermedia Model [Grønbæk and Trigg 1996],
or the Dortmund Reference Model [Tochtermann and Dittrich 1996].

The Dexter reference model was published in 1990 as the result of two workshops of
hypermedia experts. Their goal was to capture, both formally and informally, the important
abstractions found in a wide range of existing and future hypertext systems. Dexter is
formalized in the Z language [Spivey 1989], a specification language based on set theory.
An overview of the Dexter model is shown in Figure 2.1. As depicted there, it identifies
three main layers of a hypermedia application: the Run-Time Layer, the Within-Component
Layer, and the Storage Layer. The connection between these layers is established by the two
interface layers called Presentation Specifications and Anchoring .

The main focus of Dexter lies on the Storage Layer. It describes the basic node/link
network structure of a hypertext system as a hierarchy of “components”. A component is
characterized by a unique identifier and is accessible through an accessor function. It can
be either an atom, a link, or a composite entity made up from other components. Atomic
components are basic content containers that are handled as primitives with regard to the
Storage Layer. Their internal substructure is described in the Within-Component Layer.
Links are typed entities that represent uni- or bidirectional relations between components
and are specified by at least two “endpoint specifications”, each of which refers to (parts

2For a more detailed introduction to the history of hypermedia systems the reader is referred
to [Nielsen 1995, Casteleyn 2005].

26 c© Copyright TU Dresden, Zoltán Fiala

2.1. Hypermedia and Web-based Systems

Run-time Layer

Within-Component Layer

Anchoring

Presentation Specifications

Storage Layer

a ‘database‘ containing a

network of nodes and links

Presentation of the hypertext;

user interaction; dynamics

the content/structure inside

the nodes

Focus of the
Dexter model

Figure 2.1: The Dexter reference model [Halasz and Schwartz 1994]

of) a component. Since they are also handled as components, links between links are also
allowed. Finally, composite components build a hierarchy of components based on aggregation
relationships between them.

The Within-Component Layer describes the concrete content and structure (e.g. media
elements, page fragments, etc.) within the components described in the Storage Layer and
is not further specified by Dexter. Its interface to the Storage Layer is constituted by the
interface layer Anchoring that allows to address (refer to) locations within the content of an
atomic component.

While the Storage Layer and the Within-Component layer handle hypertext as an es-
sentially passive data structure, the Run-time Layer is concerned with the presentation of
components to the user, allowing him to access, view, and manipulate the overall network
structure. The fundamental concept of the Run-time Layer is the instantiation of a com-
ponent which means its presentation to a user and can be thought of as a kind of run-time
cache for the component. At a particular moment, the user of the hypertext can be viewing
and manipulating a number of component instantiations. His interactions with the hypertext
system are managed by a session entity aimed at keeping track of his current component
instantiations. The Run-time Layer provides a number of abstract functions, e.g. for starting
or ending sessions, manipulating component instantiations, following links, etc.

Again, the interface between the Run-time Layer and the Storage Layer is accomplished
by an interface layer called Presentation Specifications. Presentation specifications are a
mechanism by which information about how a component/network has to be presented to the
user can be encoded into the hypertext network at the storage layer. That is to say, the way in
which a component is presented to the user can be a function not only of the specific hypertext
tool that is doing the presentation (i.e. the specific run-time layer), but also a property of
the component itself. For more detailed information on the constructs and the formalization
of the Dexter reference model the reader is referred to [Halasz and Schwartz 1994].

Even though Dexter covers the basic functionality provided by hypermedia applications,

c© Copyright TU Dresden, Zoltán Fiala 27

Chapter 2. Adaptive Hypermedia and Web-based Systems

there are some more specific concerns (such as multimedia synchronization or adaptation)
which are not explicitly addressed by it. Therefore, a number of more specialized reference
models have been proposed, recently. For example, the Amsterdam Reference Model adds the
notion of time and synchronization to the Dexter model, thus allowing to describe hypermedia
applications using multimedia elements, too [Hardman et al. 1994]. Similarly, there exist also
extensions aimed at explicitly including adaptation, such as AHAM [De Bra et al. 1999] or
the Munich Reference Model [Koch and Wirsing 2002]. Since AHAM is the most widely
used reference model in the field of adaptive hypermedia and Web-based systems, it will be
described in more detail in Section 2.2.5.

2.1.3 The World Wide Web as a Hypermedia System

In the recent years, the World Wide Web (WWW) has become without doubt the best-known
and most widely used hypermedia system. Assuming that its basic concepts are well known
to the reader, it suffices to mention that it provides significant hypermedia functionality, such
as interconnectivity, non-linearity, and the possibility to integrate different (textual and non-
textual) media elements. Nevertheless, the Web does not support all the functionality that
a full Dexter compliant hypermedia system could offer. As the most important restrictions
the following can be mentioned [Casteleyn 2005].

• Hyperlinks in the World Wide Web are unidirectional and untyped, i.e. they do not
explicitly carry a semantic meaning. There is no support for links with more than one
endpoint, nor for hyperlinks between hyperlinks.

• Hyperlinks in the WWW are not considered stand-alone, “full-fledged” objects of the
hyperspace. Instead of being stored as separate components, they are embedded in their
source documents, i.e. merged with the actual content. Consequently, it is not possible
to alter or manipulate hyperlink structures independent of the underlying content nodes.

• The nodes of the Web hyperspace are coarse-grained file-based resources primarily
represented as HTML documents. They describe all relevant aspects of a hypermedia
presentation (content, navigation, presentation) intertwined in one document, there is
lacking support for the separation of concerns and the effective reuse of fine-grained
content fragments.

• There is no inherent support for customizing (parts of) Web presentations, it is difficult
to adjust the hyperspace to the characteristics and preferences of specific users.

• The WWW was originally invented as a simple presentation medium, implying that
users cannot modify the hyperspace and/or add new nodes or links to it.

As a matter of course, these limitations mean restrictions compared to the functionality
that a full hypermedia system can offer. Still, this relatively simple nature of the Web
is also without doubt one of the main reasons why it found its way to the general public
so quickly. This first generation of Web-based systems presented information in terms of
carefully authored hypermedia documents. Typically, it involved the manual creation of a
static set of HTML pages in order to convey information to the users. However, the Web’s
growing popularity has soon lead to the need for interactive Web-based systems that would
publish up-to-date content. As a consequence, so-called Web Information Systems (WIS)
have emerged.

28 c© Copyright TU Dresden, Zoltán Fiala

2.2. Adaptive Hypermedia and Web-based Systems

Definition 2.4 (Web Information System) A Web Information System (WIS) is an in-
formation system that uses the Web to present data to its users [Isakowitz et al. 1998].

In contrast to Web presentations built of static Web pages (also often referred to as
the “surface Web” [Houben 2004]), a WIS is typically tightly integrated with dynamic data
sources (the “deep Web” [Ghanem and Aref 2004]). It generates Web presentations based on
the data retrieved from these sources on-the-fly. Typical application areas of WIS are online
news papers, e-galleries, electronic shops, etc.

Web Information Systems are also different from traditional information systems. They re-
quire new approaches to design and development [Fraternali 1999], have the potential to reach
a much wider audience, and are usually a result of grass-roots efforts [Isakowitz et al. 1998].
The structured development process of (adaptive) WIS will be subject to Chapter 3 and
Chapter 5 of this thesis.

2.2 Adaptive Hypermedia and Web-based Systems

According to Vannevar Bush’s vision, hypermedia indeed changed “the way we think”, access,
and process information. Especially the success of the Web facilitated the world-wide publi-
cation of huge amounts of interlinked information, allowing a heterogeneous group of users to
traverse it in a non-linear manner. However, this rapid growth of the “information universe”
and the heterogeneity of its audience also showed a main shortcoming of traditional hyper-
media systems: the fact that they provide the same page content and the same set of links
to all users. It became obvious that this “one size fits all” approach would not be sufficient,
requiring hypermedia systems to adjust (adapt) themselves to the user to better facilitate
his navigation through the information space. This requirement is addressed by so-called
adaptive hypermedia and Web-based systems [Brusilovsky 1996, De Bra et al. 2004].

2.2.1 Definitions

Brusilovsky [Brusilovsky 1996, Brusilovsky 2001] defines adaptive hypermedia systems (AHS)
as follows:

Definition 2.5 (Adaptive Hypermedia Systems) “By adaptive hypermedia systems we
mean all hypertext and hypermedia systems which reflect some features of the user in the user
model and apply this model to adapt various visible aspects of the system to the user. In other
words, the system should satisfy three criteria: it should be a hypertext or hypermedia system,
it should have a user model, and it should be able to adapt the hypermedia using this model.”

When classifying AHS, a further distinction is made between adaptivity (or static adapta-
tion) and adaptability (also called dynamic adaptation). Systems that allow the user to change
certain system parameters and adapt their behavior accordingly are called adaptable3. On
the other hand, systems that adapt to the user automatically based on the system’s assump-
tions about user needs are called adaptive. In the rest of this thesis the following definitions
of adaptability and adaptivity stated by Frasincar et al. [Frasincar et al. 2002] will be used.

Definition 2.6 (Adaptability) “Adaptability (or static adaptation) means that the gener-
ation process is based on available information that describes the situation in which the user
will use the generated presentation [Frasincar et al. 2002].”

3Some authors refer to adaptable systems as configurable or customisable systems [Kobsa et al. 2001].

c© Copyright TU Dresden, Zoltán Fiala 29

Chapter 2. Adaptive Hypermedia and Web-based Systems

Definition 2.7 (Adaptivity) “Adaptivity (or dynamic adaptation) is the kind of adapta-
tion included in the generated adaptive hypermedia presentation, i.e. the generated hypermedia
presentation changes while being browsed [Frasincar et al. 2002].”

2.2.2 Adapting to what?

As stated in Definition 2.5, an adaptive hypermedia system adapts its various visible aspects
to a user model. Depending on the given application scenario, this model maintains infor-
mation on varying features describing the actual user. While there exist different definitions
of the term user model, we mention one of the first ones that was published by Timothy W.
Finin [Finin 1989].

Definition 2.8 (User Model) “A user model is that knowledge about the user, either ex-
plicitly or implicitly encoded, which is used by the system to improve the interaction.”

Based on the given application (adaptation) scenario, a user model can maintain informa-
tion on different user features. In his first survey on adaptive hypermedia systems Brusilovsky
identifies the following five features [Brusilovsky 1996]:

• Knowledge: The user’s knowledge about the concepts presented in a hypermedia sys-
tem is one of the main adaptation features considered by current adaptive hypermedia
and Web-based applications. It is most often represented in form of an overlay model
which sees the individual user’s knowledge of the subject as an “overlay” of the domain
knowledge. Another popular representation form are stereotype models aimed at distin-
guishing between different user stereotypes (e.g. novice, beginner or expert). Typically,
the information maintained on users’ knowledge is continually updated during their
interaction with an AHS.

• Goals: User goals (also often referred to as user tasks) are features related with the
context of the user’s work in an AHS [Brusilovsky 1996]. Based on the given application
area one can distinguish between different user goals, such as learning goals (typical
for Adaptive Educational Hypermedia Systems), search goals (e.g. in Adaptive IR Sys-
tems), etc. Similar to user knowledge, user goals can also dynamically change during a
browser session.

• Background and Experience: The user’s background relates to the user’s previous
experience outside the subject of the hypermedia system. On the other hand, the user’s
experience denotes his/her familiarity with the hyperspace or the given hypermedia
system.

• Preferences are a very important (and wide-ranging) user feature considered by adap-
tive hypermedia and Web-based systems. As an example, when interacting with an
AHS, users might prefer some nodes and links over others and some parts of a page over
others [Brusilovsky 1996]. Further preferences may concern the media types involved in
a hypermedia presentation (i.e. a user might favor multimedia elements [Jörding 1999]
to pure textual content) but also its layout/design (such as colors, font sizes, buttons,
etc. [Fiala et al. 2004a]). Unlike other user features, user preferences cannot be deduced
by the adaptive hypermedia system, i.e. the user has to inform the system directly or
indirectly (e.g. by a simple feedback) about such preferences.

30 c© Copyright TU Dresden, Zoltán Fiala

2.2. Adaptive Hypermedia and Web-based Systems

While these features are exclusively centered around characteristics of the user, the evolu-
tion of Web-based systems (and especially the emergence of heterogeneous mobile Web client
appliances) made it necessary to adapt hypermedia applications to different features (e.g.
devices characteristics or location), as well. Kobsa et al. [Kobsa et al. 2001] (but also the
updated survey of Brusilovsky [Brusilovsky 2001]) suggest to distinguish between user data,
usage data, and environment data.

User Data denotes information about personal characteristics of the user. While it mainly
corresponds to the user features already mentioned above, Kobsa et al. [Kobsa et al. 2001]
also mention further features such as demographic data (name, address, sex, education,
etc.) or user interests.

Usage Data relates to information describing the user’s interaction with the system that
may be directly observed and recorded, or acquired by analyzing observable data. As
possible observable interactions Kobsa et al. [Kobsa et al. 2001] mention selective ac-
tions (e.g. following a given link or selecting an option from a select list), temporal
viewing behavior (i.e. the time a user spends on a Web page), ratings, as well as pur-
chases and purchase-related actions. Based on these interactions the system can derive
so-called usage regularities, such as typical action sequences or usage frequency.

Environment Data is related to the environment of the user and describes his software
environment (e.g. browser version, available plug-ins, and client-side scripting technolo-
gies), hardware environment (e.g. device type, display size, supported interaction tech-
niques, bandwidth, processing speed), or even locale (information on the physical loca-
tion of the user). According to the targeted application scenario, the granularity of loca-
tion information used for adaptation can vary from very fine (e.g. distinguishing between
streets or even rooms in a handheld tourist guide) to rather coarse (e.g. providing differ-
ent presentations of a company in different countries) [De Troyer and Casteleyn 2004]

The adjustment of software systems (among them of Web applications) to environment
data is also the main focus of the recently emerged computing paradigms ubiquitous comput-
ing and context-aware computing. Their goal is to make users’ interactions with applications
easier by taking into account his context, i.e. the actual situation in which he interacts with
applications. The term context is typically used in a broad sense and can refer to various
features such as the user’s social context, emotional state, device, location, surroundings,
the appropriate time of day, etc. While there exist different definitions of the terms con-
text and context awareness ([Schilit et al. 1994, Schmidt et al. 1999, Abowd et al. 1999]), we
mention one of the most well-known and most often referenced definitions from Anind K.
Dey [Dey 2001].

Definition 2.9 (Context) “Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and applications
themselves [Dey 2001].”

Definition 2.10 (Context-Awareness) “A system is context-aware if it uses context to
provide relevant information and/or services to the user, where relevancy depends on the
user’s task [Dey 2001].”

Note that the generality of these definitions allows to handle the formerly mentioned user
features (both user data and usage data) also as parts of the user’s context under which he

c© Copyright TU Dresden, Zoltán Fiala 31

Chapter 2. Adaptive Hypermedia and Web-based Systems

interacts with an adaptive hypermedia or Web-based application. Therefore, in the rest of this
thesis the term context will be used to characterize both the user and all other information
describing his situation.

2.2.3 What can be adapted?

Besides the elaboration of user/context features being relevant for adaptation (“adapting to
what?”), another important question is “what to adapt”, i.e. which parts of an AHS can
differ for different users/contexts. Brusilovsky distinguishes in his surveys [Brusilovsky 1996,
Brusilovsky 2001] between content-level and link-level adaptation and denotes these adapta-
tion classes as adaptive presentation and adaptive navigation, respectively. Whereas adaptive
presentation aims at adapting the content presented on a hypermedia page (or node), adaptive
navigation adjusts the interlinking of those nodes. For both adaptation classes he identifies
the following techniques:

Techniques for Adaptive Presentation

• Adaptive Text Presentation means that the textual representation of the content
offered by a hypermedia system is adjusted. The corresponding adaptation techniques
comprise conditional text, fragment or page variants, sorting of page fragments, dim-
ming of fragments [Hothi and Hall 1998], frame-based techniques [Hohl et al. 1996],
adaptive natural language generation (NLG [Dale et al. 1998]), and stretchtext. The
latter is a special kind of “collapsible” text fragment that offers information in vary-
ing depths of detail and can be collapsed/uncollapsed according to the knowledge or
preferences of the current user, respectively [Boyle and Encarnacion 1994].

• Adaptive Multimedia Presentation aims at adjusting the non-textual media el-
ements of a hypermedia presentation. It means either the adaptation of the actual
media (such as resizing an image, reducing its color depth, transcoding a video, etc.) or
the selection from different media representations (e.g. showing a picture instead of a
video). The latter adaptation technique is also often referred to as adaptation of modal-
ity. Furthermore, note that some of the techniques mentioned above for adaptive text
presentation can be also effectively used for adapting multimedia content (e.g. condi-
tional inclusion of media elements, media elements with variants, sorting of non-textual
fragments).

Techniques for Adaptive Navigation

• Direct Guidance is one of the simplest technologies of adaptive navigation support.
It means that the adaptive hypermedia system determines the “next best” link for the
user so that he cannot decide to follow another path. A main disadvantage of this
technique is its restrictive nature, not supporting for users who would not like to follow
the system’s suggestion.

• Link Sorting means the ordering of a set of anchors, so that links are presented in
decreasing order of their relevance to the user. The disadvantage of adaptive order-
ing is that each time the user enters the same page, the ordering of anchors may be
different [Koch et al. 2001].

32 c© Copyright TU Dresden, Zoltán Fiala

2.2. Adaptive Hypermedia and Web-based Systems

• Link Hiding means that a link is available, yet presented as normal text. The goal
of this technique is to protect users from the complexity of the unrestricted hyperspace
by “hiding” links to irrelevant pages.

• Link Disabling removes the functionality of a link but leaves its visual appearance
nearly untouched. That is to say, the link anchor still looks like a link, but the user
cannot follow it. The disadvantage of this technique is that unexperienced users might
be confused by the “different” behavior of normal and disabled links.

• Link Removal means that a link is completely removed, i.e. both the link anchor and
the associated link functionality are filtered out. The underlying motivation is to reduce
the hypermedia space by removing links pointing to information that is not relevant for
the actual user.

• Link Annotation aims at the visual augmentation of links in accordance to their
importance for the user. Annotations can be realized in both textual form but also vi-
sually, e.g. by using different icons, colors, or font sizes. As an example, Dolog et al. use
the so-called traffic light metaphor to express whether a link target is too difficult (red),
recommended (green), or has been already seen (gray) by the user [Dolog et al. 2003].

• Link Generation means that the hypermedia presentation is automatically enriched
by links being not present at the time of hypertext authoring. This technique is espe-
cially very popular in adaptive information retrieval systems (see Section 2.2.4.2), but
also in adaptive recommender systems used in e-commerce applications [Burke 2002].

• Map Adaptation comprises various ways of adapting local and global hypermedia
maps (such as sitemaps of large Web applications), especially by adapting their presen-
tation or granularity.

Even though Brusilovsky uses the term adaptive presentation, note that the corresponding
techniques mentioned by him primarily concern adaptation at content-level. Therefore, Pa-
terno and Mancini identify in [Paterno and Mancini 1999] additional adaptation techniques
that explicitly focus on the presentation-level of an AHS, i.e. adaptations of the layout (such
as colours, font types, font sizes) that do not effect the underlying content. As corresponding
adaptation techniques they mention layout variants and styleguiding . While the former one
concerns the arrangement of a hypermedia page’s content elements according to a given lay-
out schema, the latter means the usage of different style guides that are used alternately for
specific layout variants. A more thorough elaboration of presentation layer adaptation will
be given in Chapter 5.

For a detailed discussion and comparison of adaptation methods and their corresponding
adaptation techniques the reader is referred to [Brusilovsky 1996, Paterno and Mancini 1999,
Brusilovsky 2001].

2.2.4 Application areas of AHS

In his surveys [Brusilovsky 1996, Brusilovsky 2001], Brusilovsky classifies adaptive hyperme-
dia systems according to their application areas. He identifies three main fields: adaptive ed-
ucational hypermedia systems, adaptive information retrieval hypermedia systems, and adap-
tive online information systems. Taking Brusilovsky’s classification as a basis, this section
summarizes the most important characteristics and “subareas” of these application fields.
Thereby, the main focus is on the broad range of adaptive online information systems, a
“subset” of which will be subject to further investigation in the rest of the thesis.

c© Copyright TU Dresden, Zoltán Fiala 33

Chapter 2. Adaptive Hypermedia and Web-based Systems

2.2.4.1 Adaptive Educational Hypermedia Systems

The first and most popular application area for adaptive hypermedia research was educational
hypermedia. Adaptive Educational Hypermedia Systems (AEHS) are e-learning systems that
use adaptive hypermedia techniques to adjust online courses to users’ varying and changing
goals or knowledge. They examine students’ learning efforts and adapt the courses or exercises
presented for them according to their improvements.

The hyperspace of an AEHS is typically relatively small and well structured by a designer.
Most often it represents a particular course or section of learning material on a given sub-
ject [Brusilovsky 1996] in form of concepts (knowledge units) and their relationships. The
goal of the student is usually to learn all this material or a reasonable part of it. To achieve
this goal, the application of adaptive hypermedia techniques can help him to optimally find
his way through the available material (link-level adaptation) and to present the course ma-
terial adjusted to his current knowledge (content-level adaptation). The user model of an
AEHS is typically an overlay model, i.e. it contains user-specific information related to the
concepts (knowledge units) of the application domain. AEHS examine students’ learning
efforts either in an explicit way (i.e. based on exercises or questionnaires) or implicitly by ob-
serving their navigation through the course material. Based on this information they update
students’ user models (also often referred to as learner models) by means of specific learning
algorithms.

As prominent examples of AEHS we mention Interbook [Brusilovsky et al. 1996], the
AHA! (Adaptive Hypermedia for All!) platform [@AHA, De Bra and Ruiter 2001], and the
KBS Hyperbook System [Henze and Nejdl 2001]. While the first two systems use deter-
ministic rule-based approaches for modeling students’ knowledge, KBS utilizes a stochastic
approach based on Bayesian networks [Burke 2002]. For a thorough review of the history
and the most important representatives of Adaptive Educational Hypermedia Systems the
interested reader is referred to [Brusilovsky 2004].

2.2.4.2 Adaptive Information Retrieval Hypermedia Systems

Adaptive Information Retrieval Hypermedia Systems are Information Retrieval (IR) systems
that make use of the hypertext paradigm. They “combine traditional information retrieval
techniques with a hypertext-like access from the index terms to documents and provide the
possibility of browsing the hyperspace of documents using similarity links between docu-
ments [Brusilovsky 1996]”.

Triggered by the rapid development of the WWW, the most challenging problem of cur-
rent IR hypermedia systems is to support the user’s information retrieval tasks in the un-
restricted Web hyperspace. Since this hyperspace cannot be structured “by hand”, the
similarity links between documents are not provided (i.e. prepared) by a designer, rather
calculated by the system, e.g. using similarity measurements. Adaptive IR hypermedia
systems take into account users’ search requests, relevance feedbacks, and usually build a
long-term model of their goals and interests. They mainly utilize navigation adaptation tech-
niques, especially link generation, link annotation, and link sorting. Brusilovsky distinguishes
between two groups of adaptive information retrieval hypermedia systems: search-oriented
systems and browsing-oriented systems [Brusilovsky 2001]. Whereas the former ones (e.g.
CASPER [Smyth et al. 2002] or the system of Marinilli et al. [Marinilli et al. 1999]) aim at
creating a list of links to documents that satisfy the user’s current information request, the
latter (such as [Fu et al. 2000]) support their users more implicitly in the process of search-
driven browsing.

34 c© Copyright TU Dresden, Zoltán Fiala

2.2. Adaptive Hypermedia and Web-based Systems

2.2.4.3 Adaptive Online Information Systems

Adaptive Online Information Systems are data-intensive hypermedia information systems
providing reference access to highly structured and typically volatile information. Similar
to the other application areas of adaptive hypermedia, their development was significantly
boosted by the success of the World Wide Web. Web-based adaptive online information
systems are often referred to as Adaptive Web-based Information Systems (AWIS)4, i.e.
systems extending the functionality of Web Information Systems (WIS) with different aspects
of adaptation.

AWIS provide different kinds of content, navigation, and presentation adaptation to vari-
ous features of both the user (knowledge, interests, preferences) and his usage context (device,
environment, or location) [Houben 2004]. Depending on the targeted application domain,
their hyperspace can range from reasonably small to very large. Most typically, AWIS pro-
vide not only hypermedia access to their information base, they also allow users to manipulate
this data based on some application logic (e.g. in electronic commerce applications). The
following (not exhaustive) list comprises the most important application areas of adaptive
online information systems.

Electronic encyclopedias are information systems that present highly-structured infor-
mation on a well-defined subject in form of a data-driven hypermedia application.
They observe users’ knowledge about different objects described in the encyclopedia
and provide adaptive comparisons to other objects. Similarly, they can trace the user’s
browsing, deduce his or her interest, and offer a lists of most relevant articles. As typical
examples PEBA-II [Milosavljevic 1997] and ILEX [Oberlander et al. 1998] can be men-
tioned, both providing adaptive comparative explanations of the stored concepts based
on the user’s navigation by means of natural language generation. Note, however, that
besides “real” electronic encyclopedias, this application category also comprises a num-
ber of other adaptive electronic online information systems, among them online newspa-
pers [Ardissono et al. 1999], digital libraries [Hicks and Tochtermann 2001], Web-based
movie or music databases, electronic yellow pages, timetable systems, etc.

Information kiosks (such as AVANTI [Fink et al. 1998]) are information systems installed
at public places, e.g. at fairs, exhibitions, or showrooms. Typically, they need to support
“walk up and use” by first time users or infrequent users [Kobsa et al. 2001]. Besides
user and usage modeling, these systems put a main focus on adaptations to characteris-
tics of the environment or locale, such as noise or reduced privacy due to the proximity
of other people. For example, the brightness or loudness of a multimedia presentation
can be adjusted to the current time of day or noise level, respectively.

Virtual museums or tourist guides provide adaptive guided tours to support the user’s
exploration of a virtual or real museum or a touristic place with context-adapted
narration. Their main goal is to adjust the presentation of every visited object to
the user’s knowledge, interests, and individual navigation path [Aroyo et al. 2005].
With the emergence of Location-based Services (LBS [Küpper 2005]), a new genera-
tion of such systems, so-called handheld guides have appeared, recently. As promi-
nent representatives HyperAudio [Petrelli et al. 1999], Guide [Cheverst et al. 2000], or
Lol@ [Pospischil et al. 2002] can be mentioned. By determining the user’s location and
behavior, such handheld guides can better support his navigation both in the physical
space and the virtual hyperspace.

4see the definition of the term Web Information System provided in Section 2.1.3

c© Copyright TU Dresden, Zoltán Fiala 35

Chapter 2. Adaptive Hypermedia and Web-based Systems

E-commerce systems use methods and techniques of hypermedia adaptation to optimally
support the shopping activities of their users. They cover a broad range of applica-
tions, among them online shops, auction systems, virtual marketplaces, etc. While a
hyperspace of information items still constitutes a major part of these systems, the
browsing of this hyperspace is not a major activity, rather a byproduct of the ma-
jor activity (i.e. shopping) [Brusilovsky 2001]. The application of adaptation methods
and techniques in an E-commerce application addresses the presentation of specific
products (e.g. based on users background knowledge, media preferences, and client de-
vices [Jörding 1999, Ardissono et al. 2002]), the recommendation of (lists of) products
that best suit the user’s interests [Linden et al. 2003], or (in the case of location-based
services) even the recommendation of a list of shops or dealers closest to their current
location [Tsalgatidou and Veijalainen 2000].

Performance support systems can be seen as a combination of domain expert systems
and domain information systems [Brusilovsky 2001]. Their main goal is to help users
solve problems in a typically very specific field, such as technical repair or medical treat-
ment [Francisco-Revilla and Shipman 2000]. The adaptation provided by these systems
is based on the user’s actual work context and goals. Based on these features appro-
priate support information (e.g. background knowledge, technical documentations, re-
views of related problems, and solutions, etc.) can be provided in a suitable way. As
a prominent example ADAPTS [Brusilovsky and Cooper 2002] can be mentioned. It
is an electronic performance support system (EPSS) for maintenance technicians that
integrates an adaptive diagnostics engine with adaptive access to technical information.

2.2.5 The AHAM Reference Model

As discussed in this section, adaptive hypermedia systems can be considered as a specialized
class of traditional hypermedia systems that are additionally characterized by the usage
of a user (or context) model and the possibility to adjust their content, navigation, and
presentation to it. As an attempt to describe, characterize, and compare them in a formal
way, De Bra et al. introduced the AHAM reference model [De Bra et al. 1999, Wu 2001]. It is
an extension of the already introduced Dexter model (see Section 2.1.2) that further specifies
its Storage Layer by dividing it into three sub models: the domain model, the user model,
and the teaching model (see Figure 2.2).

The domain model (DM) describes how the information presented by an adaptive hyper-
media system is structured and linked together. It is composed of atomic concept compo-
nents, composite concept components, and concept relationship components. Atomic concept
components are basic information fragments that are considered as primitives and are not
adaptable. Composite concept components are hierarchical aggregates that may contain both
a number of atomic or composite concept subcomponents. Finally, concept relationship com-
ponents constitute a relation between at least two (atomic or composite) concept components.
These can be both link components used for hypertext navigation, as well as other types of
rather conceptual relationships that play an important role for adaptation. As an example,
the concept relationship prerequisite can mean that the source concept A represents prereq-
uisite knowledge for the destination concept B, i.e. the user should already have visited (and
thus learned) A in order to get access to B [De Bra et al. 1999]. However, AHAM makes no
restrictions to the possible link types and their interpretation.

The user model (UM) contains information which the system records about the user.
It associates a number of user model attributes to each concept component of the domain

36 c© Copyright TU Dresden, Zoltán Fiala

2.2. Adaptive Hypermedia and Web-based Systems

Domain

Model

User

Model

Run-time Layer

Within-Component Layer

Anchoring

Presentation Specifications

Teaching Model S
to

ra
g
e
 L

a
y
e

r

Figure 2.2: The AHAM reference model [De Bra et al. 1999]

model, i.e. for each user a table containing these associations and their concrete values is
maintained. That is to say, the user model of AHAM is an overlay model represented as
a view on the domain model. As a matter of course, the names, types, and roles of user
model attributes are not prescribed by AHAM and are hence specific to each given adaptive
hypermedia application. Unfortunately, AHAM does not support the definition of user model
(or context model) parameters that are independent of the underlying domain model (such
as the user’s identification, age, background, location, etc.).

The teaching model (TM) defines how the domain model and the user model are combined
for performing adaptation. It contains a set of pedagogical rules that are parametrized by user
model parameters and describe adaptation operations on the domain model, such as includ-
ing or excluding page fragment components, hiding or annotating links, etc. For instance,
pedagogical rules might exclude specific concepts if the current user has not sufficient knowl-
edge on their prerequisites. Furthermore, they can also update user model values according
to the user’s navigation through the concept structure of the domain model. However, the
syntax of pedagogical rules is not specified by AHAM.

Finally, AHAM defines an adaptive hypermedia system (AHS) as a 4-tuple consisting of
the DM, UM, TM, as well as an adaptive engine (AE)5. The task of the AE is to adapt the
node/link structure of the hypermedia system based on the three models and to keep the user
model up-to-date, respectively. Thus, for each individual user a different navigation structure
is generated and sent to the Run-Time Layer.

As an implementation of the AHAM reference model De Bra et al. introduced the AHA!
system [De Bra and Ruiter 2001, De Bra et al. 2002]. Apart from some simplifications, it
realizes all basic models and notions of AHAM. Furthermore, it also offers a number of
graphical authoring tools for the visual definition of concepts, concept relationships, and
adaptation rules.

5We note that in [Aroyo et al. 2003] Aroyo et al. add the notion of a Retrieval Model (RM) to AHAM,
thus allowing to describe Adaptive Information Retrieval Hypermedia Systems.

c© Copyright TU Dresden, Zoltán Fiala 37

Chapter 2. Adaptive Hypermedia and Web-based Systems

Though claimed to be a universal reference model aimed at capturing common charac-
teristics of arbitrary adaptive hypermedia systems, we note that AHAM (and AHA!) are
primarily suitable for describing (and implementing) Adaptive Educational Hypermedia Sys-
tems. They put a main focus on user-specific adaptations of a hypermedia system’s conceptual
and navigational structure, but provide no support for a broader range of adaptations (e.g.
of presentation or modality) and/or context models (such as device parameters, document
formats or environment characteristics that are not necessarily associated with concepts of
the domain model). Furthermore, its central focus is on static hypermedia presentations,
not explicitly addressing the particular characteristics of adaptive data-driven information
systems.

As a reference model, AHAM provides a common vocabulary for the analysis of adaptive
hypermedia and Web-based systems, yet it does not deal with their design and implementa-
tion process. The state of the art on the field of the development of adaptive Web applications
is subject to the investigations of the following chapter.

2.3 Summary

The aim of this chapter was to provide basic information on adaptive hypermedia and Web-
based systems. Main definitions and taxonomies were stated as well as the most important
characteristics, application areas, and reference models of hypermedia adaptation were sum-
marized. The presented information provides necessary background knowledge for the reader
and will be often referred to in the rest of the thesis.

As discussed in Section 2.2.4, adaptive hypermedia and Web-based systems cover a broad
range of application areas, each having its specific characteristics and requirements. As a
matter of course, the approach presented in this dissertation focuses only on a specific sub-
set of these fields, namely on the development process of online adaptive Web information
systems aimed at presenting structured, dynamic multimedia data in a device-independent,
personalized way. Furthermore, while a main focus will be on designing and implementing
content, navigation, and presentation adaptation, other kinds of adaptation (e.g. the adjust-
ment of a Web application’s interaction behavior or business logic) will be only marginally
discussed.

After introducing the reader to the foundations of adaptive hypermedia systems in this
chapter, the next chapter will summarize and discuss related work on engineering adaptive
Web information systems. Then, the rest of the dissertation will propose an approach aimed
at the structured design and component-based development of personalized, ubiquitous Web
applications.

38 c© Copyright TU Dresden, Zoltán Fiala

Chapter 3

Development of Adaptive Web Applications: State
of the Art

“If you wish your merit to be known, acknowledge that of other people.”1

The previous chapter gave a short introduction to adaptive hypermedia and Web-based
systems. Basic definitions were stated, and reference models for adaptive hypermedia applica-
tions were presented. Furthermore, the most important methods, techniques, and application
areas of hypermedia and Web adaptation were summarized.

The continually increasing complexity of Web sites, the heterogeneity of their audience,
and the growing diversity of available Web client devices make adaptation (to the user, his de-
vice, and entire usage context) to a crucial issue of today’s Web-based systems. Nevertheless,
this need for adaptation leads to additional requirements towards the anyhow complex devel-
opment process of Web applications. As stated in Chapter 1, these additional requirements
concern all phases of a Web application’s life cycle: design, implementation, publication,
testing, maintenance, etc. Hence, it becomes obvious that the development of adaptive Web-
based systems needs to be based on systematic engineering approaches that allow to take
into account personalization and device independence in a structured manner.

Whereas the development of early Web sites was characterized by ad hoc approaches, in
the last decade new initiatives have been undertaken to address the complexity and problems
involved in creating and maintaining Web-based systems. Since about 2000, one can talk
about a new Web engineering discipline. The term Web engineering itself is defined by
Murugesan et al. in [Murugesan et al. 2001] as follows:

Definition 3.1 (Web Engineering) “Web engineering is the establishment and use of
sound scientific, engineering and management principles and disciplined and systematic ap-
proaches to the successful development, deployment and maintenance of high quality Web-
based systems and applications.”

Web engineering is a multidisciplinary field that encompasses inputs from diverse areas
such as software engineering, human-computer interaction, user interface design, requirements
engineering, systems analysis and design, hypermedia or multimedia [Deshpande et al. 2002].
It addresses numerous aspects of Web application development and management, among them
design methods and methodologies; implementation techniques; usability issues; testing, ver-
ification and validation; performance specification and analysis; update and maintenance
etc [Murugesan and Deshpande 2001]. Furthermore, triggered by the above mentioned need

1Oriental proverb

39

Chapter 3. Development of Adaptive Web Applications: State of the Art

for personalization and device/context dependency, an increasing amount of research is de-
voted to adaptation engineering , as well.

The goal of this chapter is to provide an overview of (a well-defined subset of) existing
Web engineering approaches aimed at the development of adaptive Web applications. It is
basically divided into two main parts: one (Section 3.2) summarizing component-based and
document-centric Web engineering approaches, the other (Section 3.3) focusing on model-
based Web or hypermedia design methods and methodologies. Yet, to appropriately situate
these topics (and thus the main focus of this dissertation) in the overall Web engineering
research field, Section 3.1 provides a short overview of the typical life-cycle of (adaptive)
Web applications.

3.1 Overview of the Overall Web Engineering Life-Cycle

As stated above, the development and maintenance of complex Web applications should be
based on systematic engineering processes and principles. Most typically, one can distinguish
between following process phases and related Web engineering activities [Kappel et al. 2004].

Requirements Analysis: Similar to traditional software engineering, the development of
a Web application typically starts with a requirements analysis. The corresponding
requirements engineering (RE) discipline covers all activities related to the ascertain-
ment, documentation, validation, and maintenance of requirements [Grünbacher 2003];
and involves all stakeholders (e.g. the providers, developers, but also the targeted users)
of the planned Web site. The gathered requirements might be both functional or non-
functional and address the application itself (e.g. supported user groups, the provided
content, or functionality), its systems environment (hardware or software components),
or even the entire project plan (deliverables, budget, etc.). They can be described in
different ways, such as in form of stories, storyboards, requirements lists, use cases, etc.

In contrast to conventional software systems, the requirements engineering for Web sites
is characterized by multidisciplinarity (i.e. the participation of different domain experts
like multimedia experts, content authors, database specialists, etc.), a larger importance
of quality factors (performance, security, usability, accessibility), and the need to con-
sider heterogeneous and dynamically changing deployment environments [Lowe 2003].
In the case of adaptive Web sites, this heterogeneity even increases since analysts have
to consider very different end devices, user groups, and usage contexts.

Design and Modeling: The requirements analysis phase is followed by the design of the
Web site, mostly based on a Web design method [Schwinger and Koch 2003]. Address-
ing different dimensions of the problem area, such methods allow specifying hypermedia
applications in an appropriate level of abstraction. Even though not (yet) widespread in
practice, the Web engineering research field has recently proposed a number of model-
based Web design methods2, the most important of which will be described in detail in
Section 3.3. As will be shown, they typically distinguish the data, the hypertext, and
the user interface aspects of a Web-based system.

2Note that throughout this dissertation (but also in general in the Web and software engineering fields), the
term “model” refers to different concepts, e.g. to reference models, component models, user models, context
models, design models, etc. To avoid confusion, the author aims to use the term by always explicitly naming
its particular context, as far as this is not unambiguously clear from the actual section or paragraph.

40 c© Copyright TU Dresden, Zoltán Fiala

3.1. Overview of the Overall Web Engineering Life-Cycle

When designing personalized ubiquitous Web applications, designers have to deal with
the additional aspect of contextuality . This requires a modeling of both different adapta-
tion targets (e.g. users, client devices, usage contexts) and the appropriate adaptation
processes in a high level of abstraction. However, the fact that hypermedia adap-
tation can concern all aspects of a Web site (content, navigation, presentation (see
Section 2.2.3)) implies a thorough reconsideration of (all models of) a “non-adaptive”
Web design.

Implementation: After specifying (designing) “what” functionality a Web-based system
should provide, the next question is “how” this should be implemented. Due to the
distributed nature and the recent rapid evolution of the WWW, there exists meanwhile
a huge number of different implementation techniques, among them document-centric
markup languages (e.g. HTML, WML, or other XML-based grammars), client-side
scripting and programming tools (plug-in technologies, applets, Java- or ActiveScript,
etc.), as well as server-side technologies (code-generators, database systems, applica-
tion frameworks)[Gaedke et al. 2003]. The realization of a complex Web application
requires not the application of one single technology, rather the combination of differ-
ent technologies within a comprehensive implementation framework. Furthermore, to
efficiently cope with complexity, there is a crucial need for implementation techniques
providing for “black-box-like” reuse and configurability of Web code artefacs both in
different implementation phases and on varying levels of granularity.

These aspects of reusability and configurability become even more important when re-
alizing adaptive Web applications. Instead of separately creating and managing content
and/or Web code for different client environments or possible user groups, there is a
need for “write-once-publish-everywhere” technologies enabling to create adaptable (or
even self-adaptive) implementation artefacts that can be (automatically) adjusted to
different application contexts. Thus, implementation technologies are required that
provide a clear separation of concerns (like content, layout, navigation, interaction be-
havior, etc.) in a reusable manner.

Test: The testing of a Web application has a crucial role in the overall Web site pro-
cess [Lam 2001]. It addresses both the functional and qualitative behavior of an appli-
cation, i.e. “a Web-based system needs to be tested not only to check and verify whether
it does what it is designed to do but also to evaluate how well it performs in (different)
Web client environments [Murugesan et al. 2001]”. Steindl et al. [Steindl et al. 2003]
distinguish between different dimensions of Web testing: 1) the dimension of quality
characteristics (e.g. usability, security, performance) to be tested, 2) the dimension of
system components (links, pages, server infrastructure components) to be investigated,
and 3) the phases of the overall Web engineering process (e.g. implementation, sys-
tem integration, deployment) that require test efforts. Meanwhile, there exists a broad
repertoire of test techniques and tools, ranging from link checker tools to complex stress
test frameworks for multi-tier Web architectures.

The testing of adaptive Web applications implies additional challenges compared to
non-adaptive Web sites. The first problem to be considered is the fact that their
behavior can significantly vary depending on the actual usage context. However, with
a growing number of context variables, the investigation of each test case for every
possible context configuration becomes soon unmanageable. Furthermore, it is also
nearly impossible to foresee all conceivable context configurations, e.g. the developers
of a device-independent Web site can not test it for every existing Web-capable end

c© Copyright TU Dresden, Zoltán Fiala 41

Chapter 3. Development of Adaptive Web Applications: State of the Art

device. A second problem is that the continuous acquisition and modeling of user,
usage, and context information causes additional server load, i.e. it can easily lead to
increasing response times and a worse system performance. Consequently, there is a
need for Web testing approaches that explicitly consider these additional requirements.

Operation and Maintenance: Once created, deployed, and tested, a Web application can
be launched and made accessible for its targeted audience. Yet, in contrast to tra-
ditional software applications, Web sites require continuous maintenance and updates
even in their operational phase [Deshpande et al. 2002]. Web maintenance comprises
a number of different activities, such as the advertisement of a Web application, the
steady observation and fine-tuning of its configuration (Web Configuration Manage-
ment [Dart 1999]), but first of all the continuous updating/refreshing of its content.
This latter aspect of Web Content Management (WCM [Fiala 2001]) is especially cru-
cial, since Web sites are in first place information systems, i.e. their popularity strongly
depends on the quality and actuality of the published content.

Like on all other engineering phases, the consideration of adaptation has additional im-
plications on Web maintenance. First, content creators (e.g. graphics designers, news
editors) have to prepare different versions of their content assets so that it optimally fits
the requirements of different user groups and client devices. Second, the evolutionary
nature of the Web also requires Web providers to continually “readjust or reconfigure”
even a running Web system to meet the characteristics of a newly emerged client de-
vice or a previously not considered usage context. Yet, apart from a few publications
(e.g. [Belotti et al. 2005]), this interplay of context-dependency and Web maintenance
has not been sufficiently addressed by academia, yet.

As can be seen, adaptation and personalization have a significant impact on the overall
life-cycle of a Web application. However, as a matter of course, this dissertation can only deal
with a small subset of the whole Web engineering process in detail. As stated in Chapter 1,
the central topic is the model-based design and component-based implementation of adaptive
Web sites. Therefore, this chapter consists of two parts: one reviewing component-based and
document-oriented Web engineering solutions, the other surveying model-based Web design
methods.

The component- and document-oriented approaches discussed in Section 3.2 are basically
centered around the implementation and presentation aspects of Web applications. Consider-
ing the document-centric nature of the Web (or in more general of hypertext and hypermedia
systems), they provide formalized (mostly XML-based) languages for efficiently creating and
publishing Web presentations. Hence abstracting from the current coarse-grained implemen-
tation model of the Web, they facilitate a number of benefits, such as reusability, configura-
bility, personalization, as well as platform and device independence. The documents created
in these languages typically represent Web implementation artefacts on different abstraction
levels (i.e. from atomic resources to complex Web presentations) and can be automatically
transformed to a specific Web or multimedia implementation format (e.g. (X)HTML, WML,
SMIL, X3D, etc.).

On the other hand, the model-based Web design methods described in Section 3.3 pursue
a complementary goal. Applying well-approved concepts, methods, and techniques of the
Model-Driven Software Engineering (MDE) paradigm to the particularities of Web-based
applications, they provide structured conceptual design methodologies that clearly separate
the different design issues involved in the design of Web applications [Costagliola et al. 2002].
All these different design issues are dealt with in separate design steps and are expressed as a

42 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

set of more or less formalized (design) models. Each of these models represents one concern
of the targeted application independent of the rest of the issues in a simplified and readable
form [Kappel et al. 2006]. This separation of design concerns facilitates a structured design
and development process. Furthermore, some approaches also enable to (semi-)automatically
generate an implementation for the targeted Web application based on its underlying design
models.

The rest of this chapter provides a detailed overview of the most important existing ap-
proaches from both fields. When reviewing these approaches, a main focus is on the question
of how they support different kinds of adaptation, such as personalization, ubiquity, or context
dependency.

3.2 Component-based and Document-oriented Approaches

3.2.1 WebComposition Component Model

There already exists some work on component-based Web engineering (CBWE). Gellersen
et al. discuss the problem of the coarse-grained implementation model of the Web and stress
the importance of utilizing a more fine-grained approach [Gellersen et al. 1997]. Especially,
they point out that there is a large gap between the fine granularity of existing design
models and the coarse granularity of the Web’s resource-based implementation artefacts
(e.g. HTML documents). As a consequence, a fundamental problem arises when the de-
sign of a Web application is deployed to an implementation of file-based Web resources,
not allowing for access the original design artefacts as entities anymore. To solve this
problem, they suggest a component-based approach called the WebComposition Component
Model [Gellersen et al. 1997].

WebComposition is based on an object-oriented model of Web software and aims at the
hierarchical decomposition of Web applications into components. These are reusable elements
defined on different abstraction levels. At a high level of abstraction a component might
model a Web page or even a Web site. Further down the hierarchy components can represent
fine-grained parts of pages, such as media elements, anchors, tables, etc. Whereas the leaves
in the resulting component hierarchy are called primitives, the other components are called
composites.

Components are defined by their states and behavior. The state of a component is de-
scribed by a number of properties, each represented by an attribute-value pair. Properties
can be referred to within any other property, thus allowing to express relationships (links)
between components. The behavior of a component is defined by operations on its state.
While component creators might define arbitrary operations, all components have to support
the operations setProperties, getProperties, and generateCode. The latter one specifies how
the state of a component can be mapped to its representation in the Web, for instance to
HTML code.

For the XML-based definition of components the XML-based WebComposition Markup
Language (WCML [Gaedke et al. 2000]) was introduced. Consequently, WCML documents
act as virtual component stores consisting of a set of component descriptions. A WCML
document is processed by the WCML compiler that maps the components described in that
document to the file-based Web implementation model of a specific target language. Thus,
the WCML compiler aims at analyzing the composition of components, resolving component
references, creating a Web presentation according to the components’ presentation behavior,
and at passing those pages to a Web server. For more information on WCML the reader is

c© Copyright TU Dresden, Zoltán Fiala 43

Chapter 3. Development of Adaptive Web Applications: State of the Art

referred to [Gaedke et al. 2000].
Based on the notion of components (that are defined by their properties, states, and

behavior), WebComposition utilizes a generic programming model, i.e. it does not prescribe
what types or classes of Web components may exist, how they should generate (parts of) Web
presentations, how their interfaces should look like, etc. Furthermore, it uses the prototype-
instance-model [Ungar and Smith 1987] for modeling inheritance, i.e. every component might
be used as a prototype for other components. This approach provides a simple and powerful
means for reuse and code sharing, but also results in lacking type safety. Furthermore, this
generic model also implies that developers have to take care of all important aspects of
their concrete components, such as their specification, validation, as well as their automatic
mapping to a concrete implementation provided by a specific Web document format.

As a generic model, the WebComposition approach allows to declare and create arbitrary
kinds of reusable Web components. In [Graef and Gaedke 2000] Graef and Gaedke show
how even Web applications with limited adaptation functionality can be created by reusable
components using WCML. Still, WCML provides no inherent support for defining adaptable
elements of content, navigation, presentation, and application behavior, nor does it provide
mechanisms for describing different adaptation contexts, such as user preferences, device
capabilities, etc.

Also inspired by the concepts introduced by WebComposition and WCML, this thesis will
introduce a component-based declarative document model designated to develop adaptive
Web applications. Yet, to represent the basic concepts and concerns characterizing adaptive
hypermedia and Web-based systems, the proposed component model will provide a more
explicit typing of components on a number of levels of abstraction, as well as a central focus
on device, user, and context adaptation.

3.2.2 HMDoc

Westbomke et al. [Westbomke 2001, Westbomke and Dittrich 2002] propose HMDoc, an XML-
grammar for the implementation and presentation of platform-independent structured hy-
permedia documents. It is based on the concepts of Tochtermann’s hypermedia reference
model [Tochtermann and Dittrich 1996] which were transformed into a declarative specifica-
tion based on an XML document type definition (DTD). A hypermedia document described
in HMDoc is called a hyperdocument and consists of so-called HMObjects as well as additional
structuring elements (see Figure 3.1).

The elementary objects of an HMDoc document are so-called components aimed at the
integration of media objects into a hypermedia presentation. A component contains exactly
one media object and (optionally) a number of additional descriptive metadata attributes.
On top of components so-called document nodes playing an information conveying role are
specified. They can not only contain components but also aggregate other document nodes,
so that an arbitrary deep hierarchy of document nodes is supported. Furthermore, in order
to provide hypertext navigation functionality, so-called links are used. A link is characterized
by its source and destination anchors, each of which may be (parts of) components, docu-
ment nodes, or even entire hyperdocuments. A hyperdocument described in HMDoc is thus
specified as a collection of document nodes, components, media objects, and links.

Besides the basic concepts of a hyperdocument (components, document nodes, and links),
HMDoc also introduces so-called structuring concepts. Two structuring concepts are sup-
ported: 1) subdocuments (i.e. disjunct reusable subsets of a hypermedia document) and 2)
views. The main goal of a view is to facilitate the user-specific presentation of a hyperdoc-

44 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

hyperdocument

document node

component

media object

link

anchor

1

*

*

*

1

*

*

1

1

* *

**

*

Figure 3.1: Basic structure of an HMDoc hyperdocument [Westbomke and Dittrich 2002]

ument by presenting only a restricted subset of it for a given user. Still, it is unfortunately
not further specified under which conditions a view should be used in a given usage scenario
(e.g. for a specific user or user group), nor is an explicit modeling of different usage contexts
foreseen.

While HMDoc document descriptions are implementation and platform independent, West-
bomke et al. [Westbomke and Dittrich 2002] also deal with aspects of their presentation and
propose the usage of external XSLT-based techniques for this purpose. Still, the automatic
adjustment of HMDoc documents to different user or device profiles (or models) or different
output formats is not considered. Furthermore, though a number of requirements towards
a visual authoring environment aimed at the intuitive creation of HMDoc documents are
identified and mentioned, there is no appropriate implementation available, yet.

3.2.3 Intensional Hypertext

As a “complementary approach for adaptive and adaptable hypermedia” Wadge and Schrae-
fel introduce the notion of Intensional Hypertext [Wadge and Schraefel 2001]. It is based on
intensional logic, i.e. the logic of assertions and expressions, which “vary over a collection
of contexts or possible worlds”. The basic idea behind Intensional Hypertext is that au-
thors produce HTML pages with extra markup (called intensional tags) which is aimed at
explicitly delimiting parts that are sensitive in various ways to a given context. Thereby, a
context is defined as sets of values for parameters which specify the current user profile as
supplied by the current Web page URL and the latest user input. The resulting document
format is thus a proprietary extension of HTML and is called Intensional Markup Language
(IML [Wadge 2000])3.

The language constructs of IML support basic adaptation mechanisms. Conditional inclu-
sion allows to show or hide different versions of texts and HTML fragments based on context
parameters. Parameter substitution means the inclusion of the values of context parameters
into an HTML document. Stretchtext is text available in different levels of detail so that it
can be adapted according to the current reader’s expertise or interest. Similarly, droptext is a

3IML is a further development of Intensional HTML (IHTML [Wadge et al. 1998]), a former extension of
HTML by intensional logic.

c© Copyright TU Dresden, Zoltán Fiala 45

Chapter 3. Development of Adaptive Web Applications: State of the Art

single block of text that can be made to appear or disappear separately, without affecting any
other part of the document. Furthermore, IML also supports so-called stereotype parameters
(i.e. parameters that have a discrete set of values, each of which represent a kind of common
user profile) as well as transversion links. The latter are conventional HTML links extended
with expressions that trigger context parameter updates that are automatically performed
when a user follows these links. Based on this mechanism, parts of the context information
can be changed during the user’s browsing session.

The Web pages authored in IML are translated into a Perl-like language called ISE (In-
tensional Sequential Evaluator [Swoboda and Wadge 2000]). To generate the appropriately
adapted individual pages at run-time, the Web server runs the ISE interpreter in the appro-
priate context. This interpreter produces HTML that, when displayed in the user’s browser,
is rendered into the desired adaptation of the requested page.

Though IML allows for quickly defining light-weight adaptation operations to be performed
on Web documents, a main disadvantage of the approach is that it does not support for a clear
separation of concerns such as content, layout, navigation or adaptation. Quite the opposite,
since it is an extension of HTML, all these different aspects are hard-wired and intertwined
in one single IML document, which makes its management and reuse quite complicated and
also implies that there is no support for output formats other than HTML. Furthermore,
so far there are no corresponding authoring tools available that would support the intuitive
creation of IML documents.

3.2.4 CONTIGRA

The CONTIGRA [Dachselt et al. 2002, Dachselt 2004] research project4 pursues the chal-
lenge to easily develop Web-based interactive 3D applications from reusable and standard-
ized declarative components. Its main focus is on the identification and classification of 3D
interaction elements (3D widgets) as well as on the creation of an XML-based architecture
for their specification and composition.

In order to allow for component-based reuse, CONTIGRA introduces the concept of declar-
ative 3D components. These are XML document instances describing reusable building blocks
of 3D user interfaces that can be easily configured and put together to complex 3D scenes.
They are specified by a number of XML markup languages (based on XML schema defini-
tions), each declaring a specific aspect (geometry, composition, implementation, etc.) of 3D
components (see Figure 3.2).

An instance document of the grammar CoApplication defines an overall 3D application
in terms of typical scene parameters (such as lights and viewpoints) and a reference to a 3D
root component containing the whole scene. This component is defined by two XML docu-
ments, one for its interface (according to the schema CoComponent), the other for its imple-
mentation (an instance of CoComponentImplementation). The interface document contains
configurable high-level parameters defining a component’s functionality as well as authoring
and other meta information. The implementation document firstly contains a component
graph which is a transformation hierarchy containing references to other 3D components.
For all additional parts of the scene, which are not yet available as a reusable component,
it secondly contains a scene graph. This is split into three parts for audio, geometry, and
behavior nodes, usually as references to external scene graph files. At present X3D is used for
the geometry, and the extended grammars Audio3D [Hoffmann and Dachselt 2003] and Be-

4The acronym CONTIGRA stands for “COmponent-orieNted Three-dimensional Interactive GRaphical
Applications”.

46 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

CONTIGRA-ComponentsCONTIGRA-Components

X3D

SceneGraph

X3D

CONTIGRA-Documents

XML Schemas

CONTIGRA

Component
Implementation

Sounds

Java

Media

Sounds

Java

Media

1 - n
Scene-
graph Files

Audio

Graph

Geometry

Graph

Behavior

Graph

Audio

Graph

Geometry

Graph

Behavior

Graph

CONTIGRA

Application

<CoApplication>

Description of the
3D-Scene

Light, Viewpoints…

à Root Component

CONTIGRA

Component

<CoComponent>

Interface
Declaration

Meta & Authoring
information,
Parameters

Description of the
Implementation

Subcomponent graph,
Sub-Scenegraphs,
Links

<CoComponent
Implementation>

XML Instance Files

X3D
Audio3D,

Behavior3D

Scenegraph Files External
Files

Figure 3.2: Overview of the CONTIGRA markup languages [Dachselt 2004]

havior3D [Dachselt and Rukzio 2003] for the definition of spatial audio and complex behavior
nodes respectively. The third part of a CoComponentImplementation document consists of
a separated link section connecting referenced parts.

In order to allow for the intuitive visual authoring of XML-based 3D applications from
CONTIGRA components the CONTIGRABuilder [Dachselt 2004] was developed. It is based
on an extensible repertoire of visual editor modules aimed at the visual composition of com-
ponents as well as the configuration of various component properties (parameter, metadata,
geometry, behavior, etc.). The applications created with the CONTIGRABuilder are de-
scribed independently from proprietary 3D toolkits or APIs, therefore they can be automat-
ically translated into target formats such as VRML97, X3D, OpenSG, MPEG-4 or Java3D
by using either an internal object model (data binding) or a series of corresponding XSLT-
Stylesheets.

CONTIGRA is a good example for the efficient application of reusable declarative im-
plementation artefacts for Web-based application development. However, it focuses on the
specifics of 3D user interfaces elements (geometry, behavior, etc.), not addressing the require-
ments of traditional two-dimensional hypermedia presentations. Furthermore, even though
Dachselt mentions the importance of adjusting 3D applications to different users, contexts,
and client devices [Dachselt 2004], CONTIGRA components do not provide inherent supoort
for adaptation, yet.

3.2.5 CHAMELEON

The CHAMELEON project [Wehner and Lorz 2001] aims at developing formats and tools
for reusable, adaptive courseware (courseware components) for Web-based eLearning sys-
tems. Courseware is represented in an XML-based document format called TeachML that
distinguishes between four abstraction levels: media objects, content units, didactical units,
and structures (see Figure 3.3).

On the lowest level, there are media objects that represent the atomic parts of TeachML

c© Copyright TU Dresden, Zoltán Fiala 47

Chapter 3. Development of Adaptive Web Applications: State of the Art

Course

Animation

e.g. SMIL

JAVA -

Applet

Audio

e.g. MP3

Wave

Code -

block

Text

(formatted)

Bild

z .B .

JPEG ,

GIF

Formula

MathML

Video

MPEG

Shock -

wave
other

Group of Media Objects Media objects with Explanation

other

Exercise

Statement

Example

Chapter Introduction Definition

Explanation Question Solution

Argument Problem List

Answer Table other

other

Navigational Structure

Layout

Hyperlink View

Structures Didactical Units

Content Units

Media objects

A
b

s
tr

a
c
ti

o
n

 L
e
v
e
l

e.g. e.g.

Figure 3.3: Overview of the TeachML document model [@CHAMELEON]

documents. They can either reference external media instances (e.g. images, audio or video
files, etc.) or serve as direct containers for textual content such as plain text, source code, or
formulas. On the second level, media objects are composed to so-called content units. They
group media objects which belong together to transmit a common message to the learner,
e.g. a figure and its description or a set of media objects (for instance consisting of several
formulas, texts, and references). On the third abstraction level, didactical units are defined
that play a well-defined didactical role in a TeachML-based eLearning course. They can not
only contain content units but also other didactical units, i.e. an arbitrary deep hierarchy
of didactical units is supported. A top-level didactical unit has the type course. Further
predefined didactical unit types are chapter, definition, line of arguments, example, exercise,
etc., but arbitrary author-defined extensions are also allowed.

While media objects, content units, and didactical units encapsulate content elements on
different abstraction levels, the TeachML grammar also allows to define so-called structures
on top of them (see the left side of Figure 3.3). Navigational structures are directed cyclic
graphs that define navigational paths (in form of guided tours) through didactical units.
Layout structures [Meißner et al. 2001] provide a facility for the spatial arrangement of con-
tent elements for a given output format (e.g. Web-based or print media). Finally, hyperlink
structures allow to define hyperlink references between content elements on arbitrary levels.

For the visual authoring of TeachML documents the CHAMELEONBuilder was devel-
oped [Chevchenko 2003]. It is based on an extensible modular architecture and provides a
number of editors plug-ins for graphically creating courseware components and interlinking

48 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

them to structures. Since the authoring tool for adaptive Web applications introduced in
this thesis is based on the same plug-in architecture, it will be described in more detail in
Section 5.2.

The levels and structures of TeachML allow to capture the main elements of educational
hypermedia presentations. Moreover, the possibility to define typed components provides for
efficient reuse and extensibility on all abstraction levels. However, an automatic adaptation
of components to explicit student models or other context parameters (user preferences,
device capabilities, environment context, etc.) has not been considered, yet. Note that the
component-based document format to be introduced in Chapter 4 was significantly inspired by
CHAMELEON, aiming at generalizing its component concept to a broader range of adaptive
Web applications.

3.2.6 RIML

To reduce the development effort involved in building Web applications for mobile and other
non-desktop devices, Ziegert et al. introduce the Renderer Independent Markup Language
(RIML [Ziegert et al. 2004]). It is based on the “Author once – Display Everywhere” philos-
ophy, i.e. the creation of Web content in a device independent markup language which then
gets adapted to the special characteristics of the accessing device. Similarly to IML, RIML
is not a stand-alone language, rather a custom extension to XHTML 2.0 which adds adap-
tation features such as pagination and device independent layout mechanisms. Furthermore,
in order to support form-based interactions, the RIML profile also includes the XForms 1.0
language.

As a means for structuring content on a Web page RIML uses the section element of
XHTML 2.0 [Axelsson et al. 2004]. As a consequence, the author of a RIML document is
required to put all content that should be presented on the same screen into the same section.
While sections might be nested, the innermost sections get never split up. The consequent
use of sections allows to exploit the adaptation features provided by the RIML, i.e. its support
for device independent layouts and pagination.

The layout module of RIML supports the specification of device (class) specific layouts. It
defines a set of container types: rows, columns, grids as well as so-called frames. Whereas the
containers define the overall structure of a layout definition, frames are used to fill the regions
of the layout with content. This is accomplished by the assignment of frames to XHTML 2.0
sections, i.e. the content of a section is always rendered within the region of its associated
frame.

A further adaptation mechanisms facilitated by RIML is pagination. In order to cope
with the small display sizes of mobile devices, it aims at dividing the content assigned to a
frame into multiple pages (by using sections as implicit splitting hints). To use this feature
authors can annotate selected frames as “paginable”. Furthermore, they can also control the
pagination process by specific metadata attributes, e.g. by explicitly declaring the minimum
width of a frame in pixels. When pagination occurs, so-called navigation links are generated
between the split pages. Again, authors can use RIML-specific metadata to control the types
and values of these links.

For the graphical creation of RIML documents the Consensus authoring environment was
developed. It is implemented as a plugin of the Eclipse open source platform and comprises
a set of so-called views and editors. For editing RIML documents a built-in XML editor
is provided that supports for code completion and validation based on the RIML schemas.
The Frames Layout View is a visual tool that allows a Web author to get a first impression

c© Copyright TU Dresden, Zoltán Fiala 49

Chapter 3. Development of Adaptive Web Applications: State of the Art

(preview) of how a document (based on an abstract RIML layout description) will look like
on different platforms. Similarly, the RIML Device Dependent View provides an overview
how a RIML document is paginated, i.e. how many pages are created, and what they con-
tain. For more information on the RIML and its authoring tools the reader is referred
to [Ziegert et al. 2004].

The RIML is well suited for the adjustment of textual (XHTML based) content to the
limited displays of mobile devices, as was also demonstrated in the EU project Consen-
sus [@Consensus]. Still, it does neither support basic adaptation techniques such as condi-
tional inclusion of page fragments (or variants), nor non-textual media specific adaptations
(such as the provision of media elements with quality alternatives or the replacement of im-
ages with video or textual content, etc.). Furthermore, the usage of XHTML does not allow
for a clear separation of the concerns content, structure, navigation, presentation, and adap-
tation. Finally, the lacking support of current Web browsers for the standards XHTML 2.0
and XForms implies also some limitations to the ubiquitous applicability of the RIML.

3.2.7 The XiMPF document model

For the device independent publication of multimedia content Hendrickx et al. introduce
in [Hendrickx et al. 2005] the XiMPF document model (eXtensible Interactive Multimedia
Publication Format). It is fashioned after the MPEG-21 Digital Item Declaration (DID)
model [ISO 2002], but uses a semantically richer set of elements to structure and annotate
the presentation content.

The XiMPF document format defines a multimedia document as a tree-like hierarchy
of composing items (see Figure 3.4). Each item combines a number of presentations, de-
scriptions, template instances, and subitems. A presentation aims at the platform specific
publication of an item’s content (e.g. for the Web or for a set top box). It references a number
of description elements that contain descriptive language constructs for specifying its struc-
ture (i.e. the subitems it uses), layout, synchronization, etc. Description elements further
include references to subitems to precisely place them into a hierarchy. These references are
resolved by so-called template instances that link a reference to a specific presentation in
another item.

The XiMPF document model makes abstraction of item content. It allows to use atomic
multimedia resources as alternatives for composite presentation fragments, for instance the
combination of a picture and its corresponding textual caption might be an alternative for a
video. Furthermore, XiMPF extensively uses existing W3C technologies (such as XHTML2,
CSS, and SMIL) for structure, layout, and synchronization descriptions. However, it also
introduces an own language (called XML Interaction Language) to specify the interactive
behavior of a multimedia presentation.

The publication architecture of XiMPF is based on the XML publishing framework Co-
coon [Ziegeler and Langham 2002]. It consists of an XML processing pipeline (aimed at
resolving and adapting XiMPF documents to a given presentation version), a core engine, a
resource and metadata database, as well as an adaptation service registry [Oorts et al. 2005].
The latter allows to register adaptation services for processing atomic multimedia resources
like audio and video. This adaptation primarily concerns the adjustment of multimedia con-
tent to a client profile and is performed based on information gathered from the query string

5The dashed lines denote the inclusion of references to Description and TemplateInstance elements in
Presentation elements. The arrowed lines represent the resolution of a UseItem element to a Presentation or
Item through a TemplateInstance element [Hendrickx et al. 2005].

50 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

Figure 3.4: Schematic outline of an XiMPF document5 [Hendrickx et al. 2005]

of HTTP requests.
The main strengths of the XiMPF document model are the reuse of both media resources

and presentational information at a fine level of granularity, as well as the automatic adapta-
tion of both singular and composed media content. However, while its main focus lies on the
presentation of multimedia content on different presentation platforms, it does not explicitly
address basic aspects of hypermedia adaptation (e.g. the adjustment of a Web site’s logical
or navigational structure), nor other context parameters (e.g. dynamic user information or
environmental data). Furthermore, there are no graphical tools aimed at the intuitive visual
creation and manipulation of XiMPF documents (and descriptors) available, yet.

3.2.8 Portlets as Portal Components

The recently emerged notion of Web portals indicates Web sites that provide a comprehen-
sive entry point for a large array of resources and services. A portal application typically
contains different modules (e.g., news, free e-mail services, search engines, online shopping,
chat rooms, discussion boards, or links to other sites) and also provides some kind of per-
user customization for these services. Hepper defines a portal as a “Web-based application
that provides personalization, single sign-on, and content aggregation from different sources,
and hosts the presentation layer of information systems [Hepper 2004]”. According to his
definition, a portal is composed of pluggable interface components that represent a certain
application functionality, generate dynamic Web content, and thus enable modular Web ap-
plications.

In the recent years, different incompatible APIs for portal components have been intro-
duced by various vendors. To overcome the problems arising from their missing interoperabil-
ity, the Java Portlet Specification JSR 1686 [Abdelnur et al. 1999] was proposed. According
to JSR 168, a portal consists of portal pages, each being an aggregation of so-called portlets.
A portlet is a Java-based Web component that processes requests and generates dynamic

6The acronym JSR stands for Java Specification Request.

c© Copyright TU Dresden, Zoltán Fiala 51

Chapter 3. Development of Adaptive Web Applications: State of the Art

markup in form of HTML, XHTML, or WML fragments [Hepper 2004]. The fragments
generated by the aggregated portlets form a complete Web document. Portlets can store
persistent data for a specific user and also maintain temporary session information. Their
life-cycle is managed by a so-called portal container that provides them with the required run-
time environment. Besides local portlets, a portlet container can also run remote portlets by
using the Web Services for Remote Portlets (WSRP [Allamaraju and Brooks 2005]) protocol.

Each JSR 168 compatible portlet must implement the so-called portlet interface defining
the basic portlet life-cycle. This life-cycle comprises the phases of portlet initialization, request
handling, and portlet destruction. The request handling phase is further divided into the two
categories action handling and rendering. The latter allows the portlet to produce markup
depending on the portlet’s state information, backend data, its so-called portlet mode, and
window state. The portlet mode indicates the function a portlet performs and can be either
a custom mode or one of the three standard modes VIEW (the portlet generates markup),
EDIT (the portlet lets a user customize it), or HELP (the portlet provides help information).
The availability of portal modes may be restricted (i.e. personalized) to specific user roles
of the portal. Similarly, a portlet’s window state is an indicator of the amount of portal
page space that will be assigned to the content generated by a portlet, i.e. a portlet might
produce different markup for each window state. The generation of markup is performed by
the portlets’ doView method, mostly based on the invocation of a JSP template producing
HTML fragments. Unfortunately, this rather low-level programming model does not allow to
specify application and adaptation concerns in a more higher-level declarative way, nor does
it provide type safety for portlet composition.

Besides the portlet mode and the window state, portlets can adapt themselves to the ac-
tual portal that calls them based on the so-called PortalContext containing information
on the portal vendor, the portal version, and specific portal properties. Furthermore, for the
sake of personalization, they can also access user profile information according to the W3C
recommendation P3P (Platform for Privacy Preferences [Cranor et al. 2002]). However, the
data provided by P3P contains mainly (static) user identification and contact information
(e.g., name, post address, phone number, email). Consequently, the provided personaliza-
tion services are mostly restricted to the user-specific structuring (inclusion or exclusion) of
portlets as well as the individualization of their presentation style (in terms of colors and style
elements). Other kinds of adaptation, such as media or hypermedia navigation adaptation,
are not inherently supported and must be programmed manually by portlet programmers.

3.2.9 Active Documents

Whereas the aforementioned approaches represent concrete document formats or compo-
nent models, Aßmann proposes general requirements and architectural styles for declarative
component-centric document models. He introduces in [Aßmann 2005] the concept of active
documents. These are documents that contain “both data and software, data and macros,
or data and scripts”, and that can be manipulated interactively. Typical examples for active
documents are spreadsheets, office documents containing macros, but also Web documents
comprising dynamic elements such as scripts, applets, etc. The main characteristic of an
active document is that it contains derived components (e.g. HTML fragments) that are au-
tomatically generated (derived) from a set of base components (e.g. HTML templates) by a
so-called embedded software (e.g. a template engine). That is to say, “an active document
exploits the power of programming to represent document content more concisely”.

To effectively cope with the complex engineering process of active documents, Aßmann
proposes to explicitly discern their architecture, i.e. to provide an architectural language

52 c© Copyright TU Dresden, Zoltán Fiala

3.2. Component-based and Document-oriented Approaches

for them. From frequent problems in engineering active documents he derives three main
requirements: 1) support for invasive composition operations, 2) transconsistency, and 3)
staged architectures.

Invasive composition operations: Invasive composition operations are operations that
allow to embed document fragments into document templates [Aßmann 2003]. Two
kinds of operations can be distinguished: parameterizations and extensions. The former
means that code templates carry slots that can be filled with other code fragments,
so code templates are instantiated towards executable components. The latter denotes
that code templates also carry so-called hooks (extension points), which can be extended
with other fragments.

Transconsistency: The concept of transconsistency provides “hot updates” in an active
document. This means that every change to (parts of) an active document is automat-
ically propagated to all dependent parts immediately. Transconsistency is an extended
form of transclusion, a basic operation in hypertext systems. Transclusion ensures that
whenever a node, which is included into several nodes, changes, all embedding compo-
nents also change immediately. Transconsistency extends transclusion by supporting
arbitrary operations (besides embedding). A typical scenario is the dynamic generation
of fragments of an HTML document (derived components) based on XML documents
(base component) by means of XSLT stylesheets (embedded software). Thus, whenever
a base component is edited, all derived components are also changed. Furthermore, ap-
proaches such as applet-servlet interaction in Web form processing can be also described
as generalizations of transconsistency.

Staged Architectures: In order to address the specifics of Web-based systems the notion of
staged active documents is proposed. These are active documents that are processed in a
series of so-called stages, each producing code for the next stage. A staged architecture
is a sequence of n stages, where the nth stage produces the final document. Such
an architecture is prevalent for dynamic Web-based applications, where (sequences of)
server-side processing operations are optionally followed by the execution of client-side
scripts or applets. Thereby, each processing step (stage) might be both invasive and/or
transconsistent.

After identifying architectural styles for active documents, Aßmann defines a hypothesis
for their composition. According to this, a compositional technique for active documents
relies on four concepts: 1) explicit architectures for both software and documents (including
component models), 2) invasiveness, 3) staging, 4) and transconsistency. With these concepts,
he explains the architecture of many document processing applications, especially of Web-
based systems [Aßmann 2005].

Aßmann also denotes that a multitude of today’s Web-based architectures rely on com-
ponent models for the software and data components of active documents. Furthermore,
a number of them also supports invasive operations (e.g. by expanding HTML templates),
transconsistency, and staged architectures7. Nevertheless, as a main shortcoming of existing
techniques he identifies the lacking support for typed composition operations and explicit ar-
chitecture descriptions, which leads to “maintenance headache and a major cause for future
legacy systems”. To overcome this problem, he proposes fragment-based component models
that are controlled by meta models or schemas, respectively.

7Note that the publication of WCML, IML, RIML, and XiMPF documents is based on staged architectures.

c© Copyright TU Dresden, Zoltán Fiala 53

Chapter 3. Development of Adaptive Web Applications: State of the Art

We remark that such an explicit fragment-based component model for adaptive Web pre-
sentations has been developed within the scope of this dissertation project and will be pre-
sented in Chapter 4. Though published prior to Aßmann’s work on active documents, it
provides support for the three main requirements he mentions (i.e., invasiveness, transcon-
sistency, and staging).

3.2.10 Summary and Comparison

This section dealt with existing component-based and document-oriented Web engineering
approaches regarding their applicability for personalized, adaptive Web applications. It was
shown that they not only address different application areas, but also differ in their (extent
of) support for important engineering aspects8, such as reusability, extensibility, platform-
independence, adaptability, etc. Based on the criteria listed below, this subsection provides
a comparison of the reviewed solutions.

1. Application area: Is a particular component model designated to a specific appli-
cation area (e.g. Web-based 3D applications or eLearning systems) or is it a general
approach?

2. Explicit separation of concerns: Is an explicit separation of different Web applica-
tion concerns (e.g. content, structure, navigation, presentation, etc.) provided?

3. Reusability: To what extent (e.g. at which granularity) is the reuse of components
(or document fragments) provided?

4. Composability: Is it possible to aggregate reusable components (or fragments) to
composite components that can be again subject to further composition?

5. Device/platform independence: Is the approach/technique based on a particular
platform, Web output format (e.g. HTML), or specific end device; or does it allow a
platform- and device-independent specification of components?

6. Automatic presentation generation: Is an automatic transformation of compo-
nents to a given Web output format provided or does this require additional efforts
from developers9?

7. Built-in adaptation support: Does the component (or document) model provide
inherent support (e.g. in form of buil-in language constructs) to specify the adaptation
behavior of components? Which kinds (or aspects) of hypermedia adaptation (see
Chapter 2.2) does it cover?

8. Template support: Is there support for data-driven Web or hypermedia applications?
Is it possible to define component templates (or document/fragment templates) that
can be dynamically extended (filled out) based on a query to a dynamic data source?
Note that this aspect corresponds to Aßmans requirement towards invasive composition
(see Section 3.2.9).

8The aspects listed here also serve as basic requirements towards the solution proposed in this work (see
Chapter 4).

9Note that while HMDoc or WCML allow to describe Web or hypermedia applications in a platform-
independent way, authors of such documents/components are required to take care of the platform-specific
presentation of their components themselves. This means additional efforts in comparison to e.g. CONTIGRA
or CHAMELEON that support an automatic code generation for some given output formats.

54 c© Copyright TU Dresden, Zoltán Fiala

3.3. Model-based Web Design Methods

9. Interoperability with standards: Does a particular approach make use of (or is it
based on) on existing internet, W3C, or industry standards?

10. Tool support: Is the approach optimally supported by corresponding visual tool
support?

Based on these criteria, Table 3.1 provides a tabular comparison of the presented ap-
proaches. Note that while some rows contain a short textual explanation or comment, some
only provide a “rating” based on the following rating scheme: no support (-), limited support
(+), good support (++).

As can be seen, the majority of existing approaches (except for CONTIGRA and CHAME-
LEON) addresses Web (or hypermedia) applications in general and is thus not designated to
a specific application area. Furthermore, most solutions are based on XML technology and
also provide some support for platform independence by abstracting from a concrete Web
output format. However, only a few approaches allow for the automatic generation of a Web
presentation in a variety of output formats. Moreover, besides the separation of content and
presentation, there is only limited support for explicitly distinguishing further concerns, such
as navigation, semantics, behavior, or adaptation. Similarly, only a few solutions (WCML,
CONTIGRA, and CONTIGRA) provide the advantages of traditional component models,
among them fine-grained reuse, composability, and extensibility.

As the biggest shortcoming of all investigated approaches, one can consider their lacking
support for adaptation. Only a few of them supported (very limited) aspects of content
and presentation, the majority of the basic hypermedia adaptation techniques classified in
Section 2.2 is not addressed at all. Similarly, none of the described component models
contains an explicit context or user model, and only a few of them are supported by visual
development tools. Finally, hardly any approach supports component (or document fragment)
templates explicitly, i.e. only limited authoring support for dynamic Web Information Systems
is provided.

3.3 Model-based Web Design Methods

Recently, a number of model-based Web design methods for hypermedia and Web appli-
cations have been developed. Among the most significant contributions we mention the
Relationship Management Methodology (RMM [Isakowitz et al. 1995]), the Object Oriented
Hypermedia Design Model (OOHDM [Schwabe et al. 1996]), the Web Site Design Method
(WSDM [De Troyer 2001]), the Web Modeling Language (WebML [Ceri et al. 2000]), and
the Hera specification framework [Vdovjak et al. 2003]. Even though utilizing different for-
malisms and notations, a common characteristics of all approaches is to distinguish between
the conceptual model describing the application domain, the navigational model specifying
the (abstract navigational) structure of the hypermedia presentation, and the presentation
model specifying the rendering of navigation objects (layout). Some methodologies extend
these basic models by additional ones concerning further aspects of a Web application, such
as user interaction or different kinds of adaptation (personalization, device independence,
localization, etc.). Furthermore, selected approaches also provide visual authoring tools sup-
port for creating their models as well as facilities for the (semi-)automatic generation of a
running implementation based on these models.

There are different criteria to classify hypermedia design methodologies. One possibility
is to distinguish between the modeling techniques and formalisms they utilize. Accord-
ing to this aspect, Kappel et al. [Kappel et al. 2004] distinguish between data-oriented (e.g.

c© Copyright TU Dresden, Zoltán Fiala 55

Chapter 3. Development of Adaptive Web Applications: State of the Art

W
C

M
L

H
M

D
o
c

IM
L

C
O

N
T

IG
R

A
T
each

M
L

R
IM

L
X

iM
P

F
P
ortlets

ap
p
lication

area
W

eb
apps.

hyperm
edia

W
eb

apps.
3D

W
eb

apps.
W

eb-based
W

eb
apps.

W
eb

apps.
W

eb
apps.

eL
earning

ex
p
licit

-
content

and
-

geom
etry,

content,
content,

content,
-

sep
aration

of
navigation

behavior,
sem

antics,
presentation

presentation
con

cern
s

audio
presentation,
navigation

reu
se

su
p
p
ort

+
+

+
-

+
+

+
+

-
+

+
+

com
p
osab

ility
+

+
+

+
-

+
+

+
+

-
+

+
+

ex
ten

sib
ility

+
+

+
-

+
+

+
+

-
+

+
-

d
ev

ice/p
latform

+
+

-
+

+
+

+
+

+
+

-
in

d
ep

en
d
en

ce

au
tom

atic
p
resen

-
-

-
H

T
M

L
X

3D
,

X
H

T
M

L
,

X
H

T
M

L
X

H
T

M
L

-
tation

gen
eration

M
P

E
G

-4
P

D
F

b
u
ilt-in

ad
ap

tation
-

-
+

-
-

+
+

+
su

p
p
ort

adapt.
navigation

-
-

-
-

-
-

-
-

adapt.
content

-
-

+
-

-
-

+
-

adapt.
presentation

-
-

-
-

-
+

+
+

tem
p
late

su
p
p
ort

-
-

-
-

-
-

-
+

to
ol

su
p
p
ort

-
-

-
+

+
+

+
-

+

in
terop

erab
ility

X
M

L
X

M
L

-
X

3D
,

X
M

L
,

X
H

T
M

L
X

M
L
,

JSR
168,

w
ith

stan
d
ard

s
M

P
E

G
-4

SC
O

R
M

X
Form

s
M

P
E

G
-21

D
ID

W
SR

P

T
able

3.1:
C

om
parison

of
com

ponent-based
and

docum
ent-centric

W
eb

engineering
solutions

56 c© Copyright TU Dresden, Zoltán Fiala

3.3. Model-based Web Design Methods

RMM, Hera, WebML, SiteLang [Thalheim and Düsterhöft 2001]), hypertext-oriented (such as
HDM [Garzotto et al. 1993], WSDM), object-oriented (e.g. OOHDM, UWE [Koch et al. 2001],
OO-H [Gómez et al. 2001], OOWS [Pastor et al. 2003]), as well as software-oriented (e.g.
WAE [Conallen 2000]) methodologies. Frasincar [Frasincar 2005] further identifies design
methods for Semantic Web Information Systems (SWIS) that make use of Semantic Web
technology (XWMF [Klapsing and Neumann 2000], OntoWebber [Jin et al. 2001], Hera, On-
toWeaver [Lei et al. 2005], SHDM [Schwabe and de Moura 2003], SEAL [Maedche et al. 2003],
etc.). Another possible distinction can be made depending on the order in which different as-
pects of the resulting application are specified. Most existing approaches are content-driven,
i.e. they begin with the modeling of a Web application’s underlying content, which is followed
be the proper specification of its hypertext structure and user interface. However, there are
also presentation-driven methodologies that start with the design of the user interface of a
Web application. Similarly, task-driven (or audience-driven) methodologies are based on a
detailed specification of user tasks to be supported by the application.

The rest of this section provides an overview of the most relevant existing approaches for
designing hypermedia and Web-based systems, namely RMM, OOHDM, WSDM, WebML,
and Hera. Thereby, a special focus is on the question of how they support the specifi-
cation of different kinds of adaptation. Note that besides the Web design methods dis-
cussed here there exist also other approaches (see above). Still, they either do not address
adaptation at all or do not support techniques that are not provided by the methods men-
tioned here. For a more detailed overview of Web design methods the reader is referred
to [Murugesan and Deshpande 2001, Frasincar 2005, Casteleyn 2005].

3.3.1 Relationship Management Methodology (RMM)

One of the first approaches aiming at the structured design of data-centric hypermedia ap-
plications is the Relationship Management Methodology (RMM [Isakowitz et al. 1995]). It is
based on the consideration of a hypermedia application as a system that manages information
objects and their relationships. RMM distinguishes between four design steps: E-R design,
application design, user interface design, and construction/testing.

The focus of E-R design is to specify the data managed by the hypermedia application
in terms of entities and their associative relationships [Chen 1975]. Entities have attributes
describing the characteristics of the data they represent. Similar to database modeling tech-
niques, there are one-to-one and one-to-many relationships.

Application design aims at grouping attributes to so-called slices. A slice is a meaningful
presentation unit representing a group of attributes that have to be shown together. Slices
can be both aggregated as well as interlinked by using navigation primitives. RMM allows for
different navigation primitives (called access structures) such as indices, guided tours, links,
groupings, etc.

The next step is called user interface design and aims at describing the design of screen
layouts for every element (slice) defined at application design. This includes button layouts,
the appearance of nodes and indices, and the location of navigational aids. However, instead
of providing a more formal notation, RMM suggests to use the “paper and pencil” strategy
for this phase. Finally, the last step (called construction and testing) focuses on the imple-
mentation and testing of the resulting application based on traditional software engineering
methods.

Dı́az and Isakowitz propose in [Dı́az et al. 1995] the design of RMCase, a tool to support
RMM. The proposed tool offers so-called contexts (or views) corresponding to the above

c© Copyright TU Dresden, Zoltán Fiala 57

Chapter 3. Development of Adaptive Web Applications: State of the Art

described design phases. Whereas there are visual contexts designed for drawing the E-R
model and the application model, the user interface has to be specified by creating HTML
templates, mostly based on some third-party HTML editor. Furthermore, the created HTML
templates are assumed to have appropriate “slots” which can then be populated with data
at run-time.

While RMM is one of the first approaches aimed at a clear separation of concerns in
hypermedia design, it does not address adaptation, personalization, or device independence.
Furthermore, no output formats different than HTML are supported.

3.3.2 Object-Oriented Hypermedia Design Method (OOHDM)

The Object-Oriented Hypermedia Design Method (OOHDM) [Schwabe et al. 1996] is a me-
thodology aimed at the design of complex hypermedia applications. It is based on well-known
concepts of object-oriented application development (OMT) as well as on the Hypertext De-
sign Model (HDM [Garzotto et al. 1993]). Recently, the concepts of OOHDM were adopted
to the context of the Semantic Web [Berners-Lee et al. 2001] in the form of the so-called Se-
mantic Web Hypermedia Design Method (SHDM [Schwabe and de Moura 2003]). Though it
differs from OOHDM by using Semantic Web technology (RDF(S) and OWL) for expressing
its models, the two methods are conceptually the same. They define five development phases:
requirements gathering, conceptual design, navigational design, abstract interface design, and
implementation (see Figure 3.5).

Requirements

Gathering

Conceptual

Design

Navigational

Design

Abstract

Interface

Design

Implementation

identify use cases

and scenarios

domain model by

classes and

relationships

nodes, links,

access structures

and contexts

abstract data views

(ADVs)

realization

Figure 3.5: OOHDM/SHDM overview

The Requirements Gathering phase identifies the users of the system and the activities
they would like to perform with the system based on scenarios and use cases. For each use
case, OOHDM/SHDM introduces a user interaction diagram, which graphically represents
the interaction between the user and the application. Subsequently, in order to validate each
use case, the designer might interact with users to obtain feedback and optionally adjust
interaction diagrams.

The Conceptual Design phase specifies the overall application domain based on classes and
their relationships. The used notation is based on UML class diagrams, but it provides addi-
tional features such as multiple valued attributes as well as explicitly directed relationships.
In SHDM this notation was replaced by RDF(S) and OWL [Patel-Schneider et al. 2004].

The Navigational Design phase defines a hypertext view on top of the conceptual model.
It is expressed by a Navigational Class Schema and a Navigational Context Schema. The
former specifies the objects of a hypermedia application through which users can navigate.
These can be Nodes that group class attributes from the conceptual classes, Links between
these Nodes as well as Access Structures that provide different navigation possibilities such
as indices, menus or guided tours. The Navigational Context Schema allows to restrict the
navigation spaces accessible to specific user groups by grouping navigational objects to so-

58 c© Copyright TU Dresden, Zoltán Fiala

3.3. Model-based Web Design Methods

called Contexts.
The following phase is called Abstract Interface Design. It specifies the application’s

user interface by using Abstract Data Views (ADV) that define the interface appearance of
navigational classes, access structures, menus, buttons, etc. Abstract Data Views are formal,
object-oriented models of interface objects, allowing to defined the appearance of navigational
objects in a high-level manner [Cowan and de Lu 1995].

Finally, the Implementation phase aims at the realization of the designed application.
In this phase, the designer has to map the navigational and abstract interface models into
concrete objects available in the chosen implementation environment. The model generated
after performing previously defined activities can be implemented in a straightforward way
using many of the currently available hypermedia platforms such as Hypercard, Toolbook,
Director, HTML, etc. [Schwabe et al. 1996].

In order to explicitly address different kinds of users, Rossi et al. extended OOHDM by
different personalization mechanisms [Rossi et al. 2001]. This personalization is expressed
by introducing the concept of the user class as part of the application’s conceptual model.
Attributes of the user class can be subsequently used to refine (or parametrize) the results
of navigational design, in order to adjust the information that is shown to the user (e.g. by
offering a personalized price reduction) or to select or recommend links that are more relevant
to him. However, OOHDM makes no further assumptions on the design and implementation
of the corresponding link recommendation algorithms. Furthermore, only personalization
examples concerning navigational design are discussed. Important aspects of personalization
such as device-independence, presentation layer adaptation, as well as dynamic adaptation
(according to a continually changing user or context model) are not addressed.

For developing Web applications using OOHDM different tools have been developed. As
one of the first tools the OOHDM-Web environment was introduced [Schwabe et al. 1999]. It
provides three interfaces: the authoring environment for creating navigation schemas based on
the generation of corresponding database definitions, the browsing environment for specifying
HTML templates corresponding to ADVs, and the maintenance environment for specifying
interfaces for inserting instance data. Furthermore, it is also supported by a CASE envi-
ronment allowing to describe the conceptual, navigational, and interface models using the
OOHDM notation. Another implementation is OOHDM-Java2 [Jacyntho et al. 2002] which
is based on J2EE (Java 2 Enterprise Edition) technology and supports OOHDM models that
are extended by a business model as a generalization of the conceptual model and the appli-
cation’s transactional behavior. In this implementation OOHDM models are stored as XML
documents and the page templates are defined in JSP (Java Server Pages).

Finally, besides the aforementioned “native” implementations, we also mention a different
solution aimed at the mapping of OOHDM design artefacts to a component-based imple-
mentation. Segor and Gaedke propose in [Segor and Gaedke 2000] a number of heuristic
implementation rules to map high-level OOHDM design specification to WCML components
(see Section 3.2.1). The usage of such a fine-granular implementation base provides for bet-
ter traceability and maintainability of the final implementation code. A similar approach
allowing an even automated mapping of high-level design artefacts to a component-based
implementation will be described in Section 5.3 of this thesis.

3.3.3 Web Site Design Method (WSDM)

The Web Site Design Method (WSDM [De Troyer 2001, Casteleyn 2005]) is an audience-
driven Web design methodology. This means that it starts with an explicit modeling of a

c© Copyright TU Dresden, Zoltán Fiala 59

Chapter 3. Development of Adaptive Web Applications: State of the Art

Web application’s users, their tasks, and their requirements, and uses this information to
specify the conceptual, navigational, and presentational aspects of the resulting Web site.
An overview of the design steps of WSDM is depicted in Figure 3.3.3.

Mission Statement Specification

Audience Modeling

Audience Classification

Audience Class Characterization

Conceptual Design

Task & Information Design

Navigational Design

Implementation Design

Site Structure Design

Presentation Design

Data Source Mapping

Implementation

Figure 3.6: WSDM overview

In the first phase of WSDM the so-called mission statement is expressed. It specifies
the purpose, the subject, and the targeted users of a Web site, and is formulated in natural
language. It is followed by the two-step audience modeling phase that aims at identifying the
different types of visitors of the Web site, as well as their requirements and characteristics.
In the first step, audience classification, the different kinds of users (audience classes) are
identified and ordered into a so-called audience class hierarchy. Thereby, an audience class
comprises visitors with similar functional and informational requirements. In the second
step, audience class characterization, the characteristics of the different (previously identified)
audience classes are specified in more detail. These characteristics are later taken into account
when deciding how to present information to these particular visitors.

The next phase of WSDM concentrates on the conceptual design of the site. Again, it is
divided into two substeps: task and information design, and navigational design. In the task
and information design substep the tasks to be performed by each audience class are modeled.
For this purpose a modified version of the Concurrent Task Tree (CTT [Paterno et al. 1997])
notation is utilized, which allows to hierarchically order and condition tasks as well as to
specify temporal relations between them. Furthermore, for each identified task a conceptual
data model (object chunk) has to be constructed, which exactly describes the information/-
functionality that is needed to fulfill this task. Object chunks are modeled by using a slightly

60 c© Copyright TU Dresden, Zoltán Fiala

3.3. Model-based Web Design Methods

modified version of the Object Role Modeling (ORM [Halpin 2001]) technique. The role of
the navigation design step is to define the navigational structure of the Web site and to model
how the different audience classes can navigate through it. The central navigation entities are
nodes that represent units of information or functionality. The information or functionality
represented by a node is denoted by connecting the node to one or more chunks. Furthermore,
nodes can be connected by links. Four different types of links are supported: structural links,
semantic links, navigation aid links, and process logic links [Casteleyn and De Troyer 2002].
Structural links provide the actual structure of the information and functionality being of-
fered on the site. Semantic links represent semantic relationships that exist (in the universe
of discourse) between the concepts represented by the nodes involved. Navigation aid links
are put on top of the existing structural link structure, and are aimed to better facilitate
navigation for the visitor. Finally, process logic links connect two or more nodes to express
part of a workflow or an invocation of an (external) functionality.

The conceptual design phase is followed by the implementation design, which again consists
of three sub phases: site structure design, presentation design, and data source mapping.
During site structure design the nodes defined at navigation design are grouped into so-
called pages. Presentation design describes the layout of those pages. Subsequently, the data
source mapping sub phase aims at creating mappings between the object chunks and the
actual data to be presented.

Finally, taking as an input the object chunks, the navigation design, and the implemen-
tation design, the actual implementation can be generated. This transformation can be
performed automatically and was realized in a prototype. For a more detailed descrip-
tion of the WSDM design phases and their corresponding models the reader is referred
to [De Troyer 2001, Casteleyn 2005].

To specify the (run-time) adaptive behavior of a Web site at design time, Casteleyn intro-
duces the Adaptation Specification Language (ASL [Casteleyn et al. 2003, Casteleyn 2005]).
The main idea behind this approach is the automatic reorganization of a Web site based on
user access data that can be collected at run-time. Still, instead of being personalized for
individual users based on their (individual) browsing patterns, the Web site adapts itself to
common user browsing patterns by gathering access information from all users. With the
Adaptation Specification Language, the designer has a means to specify when certain adapta-
tion should be applied (i.e. the adaptation policy) and which adaptation should be performed
(i.e. the adaptation strategy).

ASL is an ECA10-based rule language: it uses events and conditions that trigger actions.
Events can be user events (such as starting or ending a session, clicking on a link, loading
a Web site element), system events (e.g. the initialization of the Web site itself) or time
events (specifying the elapse of a certain time interval). Conditions can be defined on the
basis of constants and variables. Actions are transformations of the Web site’s structure (i.e.
manipulation of object chunks, nodes, pages) and navigation (e.g. removing, adding, moving
links). Adaptation of content and presentation (e.g. based on client device capabilities or
other context information) have not been considered, yet.

3.3.4 WebML

WebML (Web Modeling Language [Ceri et al. 2000, Ceri et al. 2003b]) was developed at the
Politecnico di Milano and is a “visual language” aiming at the specification of data-driven
Web applications. Its models utilize a graphical representation but can be also serialized to

10ECA stands for event-condition-action rules [Dayal 1988].

c© Copyright TU Dresden, Zoltán Fiala 61

Chapter 3. Development of Adaptive Web Applications: State of the Art

an XML-based notation.
The basic modeling phases of WebML strongly resemble those introduced by OOHDM. The

data design phase of WebML specifies the data model of the Web application by means of E-R-
diagrams [Chen 1975]. It is followed by the hypertext design phase that is concerned with the
construction of a coherent navigation model for the Web site based on the concept of content
units and links. Content units are the basic elements that can be shown on a Web page. They
can either publish information from a data source or represent forms with which content can
be entered. Content units can be aggregated to more complex navigational elements such
as pages, page areas (group of pages logically belonging together) or even whole site views.
Finally, the implementation phase aims at mapping the data schema to a data source as
well as at implementing the WebML pages by mapping them to JSP templates. However,
WebML does not not include a specific model for expressing presentation at the conceptual
level and hides the presentation in application specific XSLT stylesheets. The drawback of
this approach is that system maintenance becomes difficult, since these stylesheets have to
be implemented for each specific output device and format11.

Figure 3.7: WebRatio site view example [@WebRatio]

In order to support personalization, WebML includes an explicit notion of groups and
users as parts of a Web application’s data model. The standard profile of a user includes
identification information, login, trace information (visited pages and time of visit), and group
membership, but is extensible to fit a given application domain. Groups contain individual
users that are somehow related (e.g. children) and can thus be associated with dedicated site
views. Designers can utilize ECA-based business rules for computing and manipulating such

11As an alternative solution, the approach proposed in this dissertation will utilize abstract layout descrip-
tions that can be automatically transformed to a given Web output format(see later in Section 4.3.2).

62 c© Copyright TU Dresden, Zoltán Fiala

3.3. Model-based Web Design Methods

user specific information [Ceri et al. 1999]. These allow to classify users in user groups, to
manage user-specific information (e.g. a shopping cart), or to push information to users (e.g.
on new purchase opportunities).

Furthermore, in [Ceri et al. 2003a] the notion of a context model is also introduced, allow-
ing to describe context entities (e.g. device or location) associated to groups or users. Using
these additional models designers can specify both context-aware pages (i.e. pages adapted
according to context attributes) as well as different site views for specific users, groups, and
contexts. Nevertheless, the corresponding adaptation conditions primarily intervene on the
level of the hypertext model, adaptations in the presentation layer have not been considered,
yet.

As a visual environment supporting the WebML methodology WebRatio [@WebRatio] was
introduced (see Figure 3.7). It is without doubt the most mature available CASE tool for
model-based Web application development that is also used commercially. However, the tools
provided by WebRatio still do not cover the personalization and adaptation aspects provided
by the WebML models.

3.3.5 Hera

Hera [Frasincar et al. 2002, Vdovjak et al. 2003] is a model-based methodology for the design
and structured development of Adaptive Web Information Systems (AWIS). It has its origins
in the RMM design methodology (see Section 3.3.1), i.e. it focuses on the design of Web
Information Systems from a data-oriented perspective. Hera extends the concepts of RMM
by a number of additional modeling features, such as personalization, adaptation, or user
interaction. Furthermore, it uses Semantic Web technologies (RDF and RDFS) for expressing
the different models that describe an AWIS. As formerly mentioned, Frasincar refers to Hera
as a SWIS (Semantic Web Information System) methodology [Frasincar 2005].

Similar to the other methods described above, Hera distinguishes between three aspects
of WIS design: the semantic aspect, the navigational aspect, and the user interface aspect.
Each of these aspects is specified in form of a model: the Conceptual Model (CM) describing
the data of the application domain, the Application Model (AM) specifying the application’s
navigational structure, and the Presentation Model (PM) specifying its user interface.

In addition to these basic models, Hera puts a main focus on the specification of adap-
tation in a WIS. As described in [Frasincar et al. 2002], it considers adaptability (or static
adaptation) and adaptivity (dynamic adaptation)12. Nevertheless, in comparison to most
other methods mainly focusing on navigation adaptation, the adaptation design in Hera is
not considered as a separate design phase (or as a part of only one design phase), but should
be addressed throughout all design steps. That is to say, different kinds of adaptation con-
cerning the application’s underlying data, its navigation structure, and presentation layer
are foreseen. Furthermore, these adaptations should consider both the user (his preferences,
characteristics, and navigation history) as well as his usage context (e.g. client device). How-
ever, prior to the work presented in this thesis, Hera’s presentation model was not formalized,
nor was adaptation addressed at presentation design.

Since parts of the work presented in this dissertation has been carried out within the scope
of a collaboration with the Hera project (and especially the adaptive presentation model of
Hera was designed, formalized in RDF(S), and implemented as an extension of the original
Hera models in the context of this work), a detailed description of the Hera design phases
and their corresponding component-based realization will be given in Chapter 5.

12Note that a definition for different types of hypermedia adaptation was provided in Section 2.2.

c© Copyright TU Dresden, Zoltán Fiala 63

Chapter 3. Development of Adaptive Web Applications: State of the Art

3.4 Discussion

This chapter provided an overview of related work on the field of engineering adaptive Web
applications. First, it investigated component-based and document-centric solutions focusing
on the presentation and implementation aspects of Web and multimedia applications. Second,
it gave a summary of existing model-based design methods and methodologies aimed at
the high-level specification of different design concerns involved in Web applications. In
both cases, an important focus was put on the question whether (and how) the examined
solutions support different kinds of adaptation, such as personalization, device and/or context
dependency, etc.

The analysis of component-based and document-centric approaches has shown that there
is a need for formats that abstract from the current coarse-grained implementation model
of the WWW, thus facilitating to compose Web applications from fine-grained, declarative,
reusable, and configurable implementation entities. In combination with an appropriate vi-
sual authoring tool, such a solution can be efficiently utilized in different application scenarios:
from traditional hypermedia systems to more specialized multimedia (e.g. three-dimensional)
or e-Learning applications. However, there is still a lack of approaches that explicitly focus on
a clear separation of application concerns in different component types or levels. Moreoever,
current declarative component models do not support the adaptation of reusable declarative
implementation entities to different users, devices, and contexts in a component-based man-
ner, nor do they provide an automatic presentation generation facility to various Web output
formats. Furthermore, only a few of the mentioned solutions provide visual authoring tools
that would support authors to proceed in an intuitive way based on a structured authoring
process. Note that a detailed comparison of the approaches investigated in this thesis was
already provided in Section 3.2.10.

On the other hand, the main strength of model-based design approaches is their support
for the high-level design of Web applications in a structured and disciplined way. Based on the
principle of separation of concerns, they facilitate to address a number of independent design
issues and to express them in form of implementation independent high-level models. While
there exist different formalisms and notations to express those models (e.g. UML, XML, RDF,
etc.), an emerging trend is the application of Semantic Web languages for this purpose. The
advantage of such approaches is a more explicit description of application semantics, resulting
in better interoperability and (possibly) model verification support, as well as the possibility
to integrate data (models) from different ontologies and sources. As discussed above, some
of the existing methodologies provide support for selected kinds of adaptation, mostly at
navigational design. Still, important adaptation issues, such as content-level adaptation (e.g.
media adaptation) or (dynamic) adaptation at presentation design have not been sufficiently
addressed, yet. In general, the explicit design support offered for the presentation aspects of a
Web application is often neglected, as “most of the methodologies refer to templates (for ex-
ample XSL templates) that describe the styling information of the systems” [Frasincar 2005].
Furthermore, even though some methodologies provide a (semi-)automatic code generation,
fine-granular design artefacts get often lost during the implementation phase while being
transformed to the current coarse-grained Web implementation model.

Finally, according to our best knowledge, there has been only one attempt to combine
the benefits of Web design models with the advantages of component-based reuse at imple-
mentation level. As discussed in Section 3.3.2, that approach of Segor and Gaedke aimed
at offering a number of heuristic implementation rules to map OOHDM design models to
WCML components [Segor and Gaedke 2000]. However, neither was an automatic mapping

64 c© Copyright TU Dresden, Zoltán Fiala

3.4. Discussion

process achieved, nor were any kinds of hypermedia adaptation considered. Inspired by the
component-based approaches presented in Section 3.2, the next chapters of this thesis will
present a component-oriented document model as well as a corresponding visual authoring
tool for adaptive Web applications. Furthermore, it will be also shown how an implementa-
tion based on this component-based format can be automatically generated from high-level
design model specifications, thus adding automation to the overall process of design and
implementation.

c© Copyright TU Dresden, Zoltán Fiala 65

Chapter 3. Development of Adaptive Web Applications: State of the Art

66 c© Copyright TU Dresden, Zoltán Fiala

Chapter 4

A Concern-Oriented Component Model for
Adaptive Web Applications

“If we knew what it was we were doing, it would not be called research, would it?”1

The previous chapter reviewed and compared existing Web engineering solutions aimed
at the development of adaptive Web-based systems. It investigated both model-driven ap-
proaches addressing the conceptual design and high-level specification of Web applications,
as well as component-oriented and document-centric solutions primarily focusing on their
presentation and implementation aspects. It was pointed out that component-based reuse is
a crucial issue of Web engineering. Still, there is lacking support for the efficient creation
of adaptive multimedia Web presentations from reusable and configurable implementation
entities.

To fill this gap, this chapter presents a concern-oriented component model2 for adaptive
dynamic Web applications. The term concert-oriented denotes its explicit support for the
clear separation of concerns involved in a Web application, i.e. it enables to compose adap-
tive Web presentations by the aggregation and linkage of reusable document components that
encapsulate different application concerns such as content, structure, navigation, semantics,
presentation (as well as their corresponding adaptation issues) on different abstraction lev-
els. The resulting document component structures can be automatically translated to Web
presentations that are adapted to a specific user, device, output format, or other context
information.

The remainder of this chapter is structured as follows. First, in Section 4.1, the document-
centric component concept is discussed, and a number of requirements towards a document
model for adaptive Web presentations are mentioned. Based on these requirements, the fol-
lowing sections (4.2 to 4.4) present the component-based document model and its XML-based
description language in detail. The different abstraction levels of document components,
their support for adaptation, as well as the concept of document component templates are
explained by examples. In Section 4.5 a pipeline-based document generator aimed at the
on-the-fly publishing of component-based adaptive Web applications is presented. Finally,
selected benefits of the proposed model are discussed in Section 4.6.

1Albert Einstein (1879 - 1955)
2The component model was developed within the scope of the AMACONT project and is also often referred

to as the AMACONT component model.The thesis presents the author’s contributions to the model, based
on requirements towards the efficient authoring of adaptive Web applications from reusable components.

67

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

4.1 Declarative Document Components

Szypersky defines in [Szyperski 1998] the notion of a software component as follows:

Definition 4.1 (Software component) A software component is a unit of composition
with contextually specified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to third-party composition [Szyperski 1998].

This original definition considers a software component as a binary unit of composition
that is typically based on an imperative implementation. Still, in recent years a number of
declarative component approaches have emerged, aiming at describing not only the interfaces
and properties, but even the functionality of reusable implementation entities in a declara-
tive human-readable form [Dachselt 2004, Aßmann 2005]. This shift from the traditional
program-centric to a document-centric application development paradigm has been especially
characteristic for the World Wide Web. As prominent examples well-established standards
such as SMIL (Synchronized Multimedia Integration Language [Bulterman et al. 2005]) or
SVG (Scalable Vector Graphics [Ferraiolo and Jackson 2003]) can be mentioned, that facil-
itate to create complex Web and multimedia applications on top of XML-based declarative
document descriptions. Furthermore, as discussed in Section 3.2, there already exists a num-
ber of approaches (WCML, CONTIGRA, CHAMELEON) that explicitly focus on reusing
declarative Web implementation entities in a component-wise manner.

The component-based document model presented in this chapter was inspired by the pre-
viously discussed approaches WebComposition (WCML), CONTIGRA, and CHAMELEON.
Adopting their document-centric component concept, it supports the development of person-
alized ubiquitous Web presentations from declarative reusable implementation entities called
document components [Fiala et al. 2003a, Fiala et al. 2003b].

Document components are XML documents, instances of a specific XML-grammar de-
scribing adaptive Web content. They can be defined on different abstraction levels, each
representing a separate application concern (e.g. content, structure, semantics, navigation,
presentation) involved in a Web presentation. Document components are unequivocally iden-
tified by a unique identifier and further described by appropriate metadata. Acting as their
interface definition, this metadata specifies their properties (such as their structure, layout)
as well as their adaptive behavior. Web sites are constructed by configuring, aggregating,
and interlinking components to complex component structures. During document generation,
these abstract document structures are dynamically translated into Web pages in a concrete
output format and are automatically adapted to the current usage context.

Even though document fragments are no (binary) software components according to the
above mentioned software engineering definition of Szyperski, note that they show a lot of
similarities to the classic component concept. They are system independent and reusable
units, representing a certain functionality that can be combined to complex applications.
Furthermore, they provide a clearly defined interface described by specific metadata, allowing
for configuration and aggregation on higher component levels3.

While the specifics of the component model and its XML-based description language are
described in detail in the subsequent sections, the following list comprises the most important

3Though being different from the component definition of Szypersky, note that the concept of document
components also corresponds to the notion of components of a hypermedia system as defined by the Dexter
reference model [Halasz and Schwartz 1994].

68 c© Copyright TU Dresden, Zoltán Fiala

4.2. A Component-based Document Model and its XML Description Language

requirements that were considered during their design. These requirements were derived from
the previously discussed shortcoming of existing solutions (see Section 3.2.10) as well as the
main goal of the thesis: the efficient component-based authoring of adaptive Web applications
from reusable implementation artefacts4.

1. Rigorous separation of different concerns involved in a Web presentation, such
as content, structure, navigation, layout, and adaptation.

2. Reusability of (parts) of Web presentations on both different abstraction levels and of
different granularity (i.e. from fine-granular atomic resources to coarse-grained complex
Web document structures).

3. Composability of reusable document parts to aggregates (composites) that again act
as reusable units and can be subject to further composition.

4. Ease of configuration and adjustment of parts of Web presentations of different
granularity through well-defined interfaces described by appropriate descriptive meta-
data.

5. Inherent adaptation support by built-in language constructs allowing to refer to
user and context model parameters. Provision of generic facilities for defining condi-
tional alternatives (of different concerns such as content, structure, navigation, presen-
tation) depending on the actual client device, user preferences, and the entire usage
context.

6. Platform and device independence by abstraction from concrete implementation
platforms, client devices, Web browsers, and specific Web output formats.

7. Support for media integration allowing to incorporate both existing and future
media and internet document formats.

8. Support for data-driven Web presentations based on component templates that
can be extended (i.e. “filled”) with dynamically retrieved data at run-time.

9. Interoperability with existing internet standards by extensive usage of approved XML
technologies.

10. Extensibility and flexibility support through modularity as well as well-defined
metadata interfaces.

4.2 A Component-based Document Model and its XML De-
scription Language

As discussed above, the proposed document model is based on the notion of declarative doc-
ument components. These are instances of a specific XML-grammar that represent different
application and adaptation concerns on various abstraction levels and can thus be configured,
aggregated, and interlinked to complex adaptive Web presentations.

In order to support platform independence and interoperability, the document format
was specified based on XML-technology. It is defined by a set of XML Schema documents

4Note that these requirements also served as the basis for comparing existing component-based and
document-oriented approaches in Section 3.2.10

c© Copyright TU Dresden, Zoltán Fiala 69

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

[Fallside and Walmsley 2004], each specifying a separate aspect of the document model, such
as composition, metadata, adaptation, presentation, etc. Note that XML Schema allows
for more powerful definitions than a DTD by supporting namespaces, type safety, reuse of
type definitions, more exact expressions of cardinality, self-documentation as well as type
inheritance.

The document model allows to define components on different abstraction levels (also re-
ferred to as component levels), each responsible for a given application concern. In Figure 4.1
the corresponding level-based architecture is illustrated. It is constituted of media compo-
nents, content unit components, document components, and the hyperlink view. Based on a
number of representative examples, the following sections introduce each component level in
more detail.

CompanyHomepage

Media
Components

Document
Components

Profile

Content Unit
Image with

textual

explanation

Content Unit
Components

Hyperlinks

Content Unit
Image with

audio

explanation

Content Unit

...

Contact

ProductList

Introduction

History

Text
Text

Text
Video

Text
Style-
sheetText

Image
Text
Media
...

Product

Hyperlink

Aggregation

Figure 4.1: A concern-oriented component model for adaptive Web sites [Fiala et al. 2003a]

4.2.1 Media Components

On the lowest level of the component hierarchy there are media components that encapsulate
particular media assets by describing them with specific XML-based metadata. The set of
supported media assets comprises text, toggle-text, structured text (e.g. HTML or XML code
fragments), images, sound, video, Java applets, Flash and Director presentations, but may
be extended arbitrarily. Dynamically created media components (e.g. HTML fragments or
pictures generated on the fly) are also supported, provided that the corresponding metadata
is delivered, as well. Furthermore, even whole documents (such as HTML pages) might be
wrapped to media components in order to optimize page generation and support flexible
authoring.

As an example, the code snippet in Listing 4.1 describes a simple image component. It is
unequivocally identified by its name attribute which is unique for all components. The layer
attribute (see line 1) dictates that it is a component from the level of media components.

70 c© Copyright TU Dresden, Zoltán Fiala

4.2. A Component-based Document Model and its XML Description Language

The namespace aco identifies the XML schema definition AmaComponent.xsd which specifies
the different levels, types as well as the composition hierarchy of components. Similarly, the
namespace amet identifies the XML schema document AmaMetaInformation.xsd aimed at
defining the possible metadata attributes of components. The metadata attributes of media
components (aimed at describing their technical properties) were inspired by the appropriate
descriptors of the MPEG-7 standard [Manjunath et al. 2002]. In the presented example they
describe the image object’s size dimensions (width and height) as well as its source location.

1 <aco:AmaImageComponent name="myImage" layer="Media">
2 <aco:MetaInformation>
3 <amet:ImageMetaData>
4 <amet:source>images/myimage.jpg</amet:source>
5 <amet:width>500</amet:width>
6 <amet:height>300</amet:height>
7 </amet:ImageMetaData>
8 </aco:MetaInformation>
9 </aco:AmaImageComponent>

Listing 4.1: Simple media component example

In order to support for form-based user interactions, the component-based document for-
mat allows to define Web form elements (such as input fields, select lists, check boxes, etc.)
as media components [Hoja 2005]. This can be done either by using a structured text com-
ponent that contains a form description in a specific Web output format (e.g. HTML) or by
using a dedicated XForms component encapsulating a form description based on the XForms
standard [Dubinko 2004]. By separating the data model, the behavior and the presentation
aspects of Web forms, XForms allows for the specification of interaction elements in a device
independent way.

4.2.2 Content Unit Components

On the second component level, media components are grouped to so-called content units.
The purpose of such groupings is the explicit combination of media elements that belong
together concerning their content5 and thus should not be handled separately. For example,
an image with its appropriate textual description can constitute a content unit. Further
predefined content unit types are audio component with text component or collection of me-
dia components, but arbitrary extensions are supported. Note that the definition of such
collections of media objects is a key factor of component reuse.

As an example, the code snippet in Listing 4.2 illustrates a simple content unit containing
an image and a text component (both from the media component layer). Whereas in this case
these subcomponents are “physically” aggregated to a content unit (see the SubComponents
tag in line 5), note that it is also possible to include subcomponents by reference from another
XML document. The latter mechanism allows to efficiently reuse components in different
composition scenarios.

Since the media components constituting a content unit belong together, they also have
to be presented together in a Web presentation. Therefore, appropriate metadata describing
their layout, i.e. their relative spatial arrangement on the generated hypermedia pages is
needed. For this purpose content unit components contain additional layout descriptions (as
part of their own meta data information). Inspired by the layout manager mechanism of

5e.g. in order to represent a given concept of an application domain

c© Copyright TU Dresden, Zoltán Fiala 71

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

1 <aco:AmaImageTextComponent name="myUnit" layer="ContentUnit">
2 <aco:MetaInformation>
3 ...
4 </aco:MetaInformation>
5 <aco:SubComponents>
6 <aco:AmaTextComponent name="myText" layer="Media">
7 ...
8 </aco:AmaTextComponent>
9 <aco:AmaImageComponent name="myImage" layer="Media">

10 ...
11 </aco:AmaTextComponent>
12 </aco:SubComponents>
13 </aco:AmaImageTextComponent>

Listing 4.2: Simple content unit example

the Java language, these properties describe a size- and client-independent layout allowing
to abstract from the exact resolution of the display or the browser’s window. A detailed
description of these layout descriptors will be given in Section 4.3.2.

4.2.3 Document Components

The uppermost component level contains so-called document components. These are mean-
ingful presentation units of a Web application that typically play a certain semantic role,
such as a news column, a product presentation, a navigation bar or even a whole Web page.
Take for example a document component bearing the semantic role “company product”. It
could aggregate (and thus be represented by) the content unit from Listing 4.2 that again
contains an image component and a text component.

Document components can not only contain content units, they can also aggregate other
document components. This aggregation results in an arbitrary deep hierarchy of document
components which describes the logical structure of a component-based Web document. The
root component (element) of a component-based adaptive Web document has to be always
a component from the document component level. Such a top-level document component
contains all the information to be shown on the user’s display at a particular moment. Ac-
cording to the component hierarchy example depicted in Figure 4.1, Listing 4.3 demonstrates
the corresponding aggregation of components6.

The document components constituting a Web presentation typically portray some mean-
ingful concepts that are represented by (a set of) content units or aggregated document
components. Still, the component-based document format does not prescribe to explicitly
specify the semantics of document components by unequivocally assigning them to parts (i.e.
concepts or attributes) of a specific conceptual model or domain ontology. The component
hierarchy of a Web page is specified by component authors in the authoring process which
will be described in detail in Chapter 5. There it will be also shown how component-based
Web applications presenting information on a well-defined application domain can be sys-
tematically developed.

In analogy to content units, the presentation of document components on a Web page is
specified by layout properties defining the spatial adjustment of their aggregated document

6Similar to content unit components, document components can not only “physically” contain their sub-
components (as aggregated XML subelements), they can also include subcomponents contained in separate
XML documents by reference.

72 c© Copyright TU Dresden, Zoltán Fiala

4.2. A Component-based Document Model and its XML Description Language

1 <aco:AmaCompanyHomepageComponent name="Company" layer="DocumentComponent">
2 <aco:SubComponents>
3 <aco:AmaProductListComponent name="ProdList" layer="DocumentComponent">
4 <aco:SubComponents>
5 ...
6 <aco:AmaProductComponent name="Product" ...>
7 <aco:SubComponents>
8 <aco:AmaImageTextComponent ... layer="ContentUnit">
9 <aco:SubComponents>

10 <aco:AmaImageComponent name="myImage" layer="Media">
11 ...
12 </aco:AmaImageComponent>
13 <aco:AmaTextComponent name="myText" layer="Media">
14 ...
15 </aco:AmaTextComponent>
16 </ac:SubComponents>
17 </aco:AmaImageTextComponent>
18 </aco:SubComponents>
19 </aco:AmaProductComponent>
20 ...
21 </aco:SubComponents>
22 </aco:AmaProductListComponent>
23 ...
24 <aco:AmaContactComponent name="Contact" layer="DocumentComponent">
25 ...
26 </aco:AmaContactComponent>
27 ...
28 </aco:SubComponents>
29 </aco:AmaCompanyHomepageComponent>

Listing 4.3: Document component composition example

components. However, the layout properties of a given component only describe the presen-
tation of its immediate subcomponents which encapsulate their own layout information in
a standard component-based way. Thus, in order to provide reuse and configuration, each
composite component stores and manages its layout information on its own. The concept of
adaptive layout managers will be introduced in detail in Section 4.3.2.

4.2.4 Hyperlink Components

Whereas aggregation relationships between components are expressed on the level of content
unit components and document components, navigational relationships between components
are defined by so-called hyperlink components, each defining an (optionally typed) directed
link between two “non-hyperlink” components7. Two kinds of of hyperlink components exist:
simple hyperlink components and hyperlink list components. While a simple hyperlink com-
ponent constitutes a directed (and optionally typed) navigational relationship between two
components (that act as its source and destination anchors), a hyperlink list component is a
collection of simple links aimed at the easier definition of index-like navigation structures.

For the sake of efficient document reuse, hyperlinks are always defined within the scope

7Even though hyperlinks are also considered as components, the document model does not allow to specify
hyperlinks between hyperlinks, i.e. the end points of a hyperlink may be only media components, content unit
components or document components.

c© Copyright TU Dresden, Zoltán Fiala 73

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

of a document component. The fact that a hyperlink component is specified within the
scope of a document component means that at least its source anchor is contained in (the
subcomponent hierarchy of) that document component. Consequently, the reuse of that
document component in another composition scenario also implies the reuse of its associated
hyperlinks.

The specification of hyperlink components is based on the XPath [Berglund et al. 2004]
and XPointer [DeRose et al. 2002] standards of the W3C. The source anchor of a hyperlink
component is unequivocally described by the identifier of its source component and an op-
tional offset. The source component of a hyperlink component is (if not further specified)
either the document component in the scope of which it was defined, or an arbitrary compo-
nent of its subcomponent hierarchy. Furthermore, an (optional) XPointer expression defining
an offset of the source link anchor in that component can be also specified. Typically, this
offset is needed in order to define a hyperlink anchor that is assigned only to a fragment of
a text component.

The destination of a hyperlink component is either a component in the subcomponent
hierarchy of the document component in which it was defined, or an arbitrary component
in another component-based Web document. Besides, external link destinations pointing to
arbitrary URIs are also allowed, thus facilitating to reference any external content.

Finally, hyperlink components can be optionally assigned a type and/or a class attribute,
as well. The former one allows for the specification of typed navigational relationships be-
tween components. However, the possible hyperlink types are not prescribed by the docu-
ment format and can thus be specified by component authors (e.g. by exploiting existing link
type classifications [Casteleyn and De Troyer 2002]). The latter one (class attribute) aims
at assigning a presentation class to hyperlinks. Links with different class attributes can be
visualized differently (by the definition of appropriate CSS media components attached to
their containing components) and thus be used for realizing link adaptation techniques such
as link annotation or link disabling (see Section 2.2.3).

The code snippet depicted in Listing 4.4 shows a simple hyperlink component defining a
navigational relationship between two components. It was defined in the scope of the docu-
ment component that was visually shown in Figure 4.1, representing a company homepage.
The source anchor of this link is the component called “Introduction” (see the From element
in line 5), its destination is the component called “Contact”. Since in this case both com-
ponents are subcomponents of “Company”, its reuse in another composition scenario also
implies the reuse of this hyperlink component. Note that in this example no link type was
defined.

4.3 Adaptation Support

The component-based document format supports a separation of concerns by distinguishing
between different abstraction levels of components as well as their interlinking. Important
aspects of a Web presentation, such as content, structure, semantics, navigation, etc. are han-
dled on different component levels, thus enabling a better reuse and configurability of (even
parts of) a Web presentation. Furthermore, this level-based model also facilitates the efficient
separation of different adaptation targets (i.e. parts or aspects of a Web presentation to be
adapted). The following paragraphs mention typical adaptation concerns to be considered
on the different component levels.

Adaptation of Media Components: Adaptation on the level of media components pri-

74 c© Copyright TU Dresden, Zoltán Fiala

4.3. Adaptation Support

1 <aco:AmaCompanyHomepageComponent name="Company">
2 <aco:Hyperlinks>
3 ...
4 <aco:AmaComponentLinkComponent name="Link_1" layer="Hyperlink">
5 <aco:From component="Introduction"/>
6 <aco:To component="Contact"/>
7 </aco:AmaComponentLinkComponent>
8 ...
9 </aco:Hyperlinks>

10 <aco:SubComponents>
11 ...
12 </aco:SubComponents>
13 </aco:AmaCompanyHomepageComponent>

Listing 4.4: Link component example

marily concerns media quality and is required to consider various device capabilities
or other technical constraints. For instance, in a device independent Web presentation
it is necessary to provide different instances of a certain picture (image component)
with variable size, color depth or resolution in order to automatically adapt to various
display types. Similarly, a video component should be provided with different bit rates
to be adjusted to the currently available bandwidth.

Adaptation of Content Unit Components: Adaptation on the level of content units
concerns the type and number of the included media components (that actually consti-
tute the structure of a content unit) and can be defined for different purposes. On the
one hand, technical properties of client devices can be taken into account. For example,
on a company homepage a user with a high performance client could be shown a short
video clip of the presented article, while others with low-performance terminals would
be presented an image and a textual description of that product. On the other hand,
the adaptation of content units may also consider semantic user preferences. Consider
again the case of two customers, one of them preferring detailed textual descriptions, the
other visual information. While the presentation for the first user might include content
units primarily referring to textual objects, the other could be shown multimedia infor-
mation, respectively. These kinds of adaptation were approved as very profitable e.g.
in the TELLIM project [Jörding 1999, Hölldobler 2001] focusing on electronic shopping
applications.

Adaptation of Document Components: Adaptation of document components concerns
the overall component hierarchy, i.e. the way document components are nested. This
results in different variations of component trees (and thus Web page structures) de-
pending on user preferences and client properties. For instance, consider the component
hierarchy shown in Figure 4.1 that represents a company homepage. Depending on the
interests and previous knowledge of users, the resulting Web page could be generated
differently. For internal users working as employees of the company, the document com-
ponent presenting the company’s history should not be inserted in the generated Web
page.

Nevertheless, note that the adjustment of document components may also depend on
other parameters, e.g. client capabilities. Let us consider the Web portal of a railway
company as an example. Whereas the desktop PC version of such a Web site might
include numerous parts such as timetable, online-shop, online travel agency, etc., the

c© Copyright TU Dresden, Zoltán Fiala 75

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

WAP version is mostly restricted to a minimal set of services, e.g. merely an online
timetable.

Adaptation of Hyperlink Components: Finally, adaptation on the level of hyperlink
components implies the adjustment of hyperlink targets as well as navigation struc-
tures according to information describing the actual usage context. It might concern
the usage of different adaptive navigation techniques, such as the conditional inclusion
or annotation of hyperlinks, the offering of navigation alternatives, etc. This adjustment
of hyperlink structures can allow a personalized navigation through a component-based
Web presentation.

In order to realize these adaptation scenarios, the component model facilitates two generic
adaptation mechanisms. First, it is possible to specify context-dependent adaptation vari-
ants for (different aspects of) components. Second, a facility is provided for describing the
adaptive layout of components by means of client-independent layout descriptors that can be
automatically adapted to different output formats. The rest of this section describes these
two mechanisms in more detail and illustrates them by representative examples.

4.3.1 Describing Adaptation Variants

To provide generic adaptation support, components (but also their parameters) may include
a number of (conditional) alternatives. As an example, the definition of an image component
might include two variants for color and monochrome displays. Similarly, the number, struc-
ture, spatial arrangement, and linking of subcomponents within a composite component can
also vary depending on the current usage context. The decision, which alternative is selected,
is made during document generation (see Section 4.5) according to a selection method which
is also encapsulated by the component.

Such selection methods are chosen by component developers at authoring time and can
represent arbitrarily complex conditional expressions parameterized by context model pa-
rameters. These parameters describe the user’s actual usage context (e.g. his knowledge,
characteristics, preferences, client device, location, etc.) and will be described in more detail
in Section 4.5.3. The XML-grammar for selection methods was specified as an XML Schema
definition and allows for the declaration of user model parameters, constants, variables, and
operators, as well as complex conditional expressions (such as if-then-else or switch-case)
of arbitrary complexity [Fiala et al. 2003a, Fiala et al. 2003c]. The appropriate reconfigura-
tion (adjustment) of a component’s adaptation logic allows to reuse it in different adaptation
scenarios.

The example code in Listing 4.5 demonstrates the definition of a media component’s vari-
ants as well as a corresponding selection method. It is taken from a Web presentation offering
different versions of media elements for different end devices (in high quality for desktop com-
puters and low quality for mobile clients), i.e. the appropriate variant is chosen based on the
actual client device. The possible variants to be selected are defined in the Variant elements
(see the lines 21 and 24). Again, the the namespace aada references the XML schema def-
inition AmaAdaptation.xsd which specifies the grammar for describing variants and their
corresponding selection methods.

The selection method is contained in the Logic tag (line 5), which is in this particular
example an IF-THEN-ELSE construct. The condition to be evaluated is specified within the
Expr element. Based on the Polish Notation (PN)8, it is an arithmetic expression consisting

8The PN-based definition of arithmetic expressions allows for their proper validation, as well as evaluation

76 c© Copyright TU Dresden, Zoltán Fiala

4.3. Adaptation Support

1 <aco:AmaImageComponent name="myAdaptiveImage">
2 <aco:MetaInformation>
3 <amet:ImageMetaData>
4 <aada:Variants>
5 <aada:Logic>
6 <aada:If>
7 <aada:Expr>
8 <aada:Term type="=">
9 <aada:UserParam>Device</aada:UserParam>

10 <aada:Const>Desktop</aada:Const>
11 </aada:Term>
12 </aada:Expr>
13 <aada:Then>
14 <aada:ChooseVariant>HQ_Picture</aada:ChooseVariant>
15 </aada:Then>
16 <aada:Else>
17 <aada:ChooseVariant>LQ_Picture</aada:ChooseVariant>
18 </aada:Else>
19 </aada:If>
20 </aada:Logic>
21 <aada:Variant name="HQ_Picture">
22 ...
23 </aada:Variant>
24 <aada:Variant name="LQ_Picture">
25 ...
26 </aada:Variant>
27 </aada:Variants>
28 </amet:ImageMetaData>
29 </aco:MetaInformation>
30 </aco:AmaImageComponent>

Listing 4.5: Describing adaptive variants

of a simple term (Term) that compares the context model parameter Device (referred to
as <UserParam>Device</UserParam>) with the constant “Desktop”9. The elements
Then and Else specify either (like in this case) the appropriate variants to be selected if the
condition holds or not, or contain another IF-THEN-ELSE or SWITCH-CASE construct.
However, the definition of the else-branch is optional. Whenever it is missing, the selection
logic describes conditional inclusion, i.e. the addressed variant is presented if and only if the
condition holds.

Note that such a component containing adaptation variants acts as an adaptive and
reusable “Web site building block”. Based on its internal adaptation logic, it can auto-
matically adjust (or reconfigure) itself to the current usage context. Furthermore, since both
this logic and the corresponding adaptation variants are inherently contained by it, it can be
reused as an adaptive unit of composition in different Web documents. As a consequence, it
even fulfills the definition of a self-adaptive software provided by [Oreizy et al. 1999]10.

While the adaptation logic described in Listing 4.5 is based on a simple conditional expres-
sion in the IF-THEN-ELSE style, Listing 4.6 shows another example that uses a SWITCH-

by XSLT stylesheets [Kay 2004].
9The children elements of a Term element might be again Term elements, thus allowing to define arbitrarily

complex arithmetic expressions.
10According to Oreizy et al., “self-adaptive software modifies its own behavior in response to changes in its

operation environment” [Oreizy et al. 1999].

c© Copyright TU Dresden, Zoltán Fiala 77

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

CASE construct allowing to easily select from more than two different alternatives. It is taken
from an eLearning example and aims at the selection of an appropriate document component
based on the expertise level of the actual user (Beginner, Advanced or Expert). Note the
optional Default element in line 19 aimed at determining the variant to be selected if none of
the other cases holds. It can be used to guarantee that the resulting component is not empty.

1 <aada:Variants>
2 <aada:Logic>
3 <aada:Switch>
4 <aada:Expr>
5 <aada:Term>
6 <aada:UserParam>Expertise</aada:UserParam>
7 </aada:Term>
8 </aada:Expr>
9 <aada:Cases>

10 <aada:Case value="Beginner">
11 <aada:ChooseVariant>Beginner_Version</aada:ChooseVariant>
12 </aada:Case>
13 <aada:Case value="Advanced">
14 <aada:ChooseVariant>Advanced_Version</aada:ChooseVariant>
15 </aada:Case>
16 <aada:Case value="Expert">
17 <aada:ChooseVariant>Expert_Version</aada:ChooseVariant>
18 </aada:Case>
19 <aada:Default>
20 <aada:ChooseVariant>Beginner_Version</aada:ChooseVariant>
21 </aada:Default>
22 </aada:Cases>
23 </aada:Switch>
24 <aada:Logic>
25 </aada:Variants>

Listing 4.6: Describing adaptation variants (Example 2)

As a matter of course, adaptation variants may be defined on all component levels. When
adjusting complex document structures to the current usage context the appropriate selection
methods are processed recursively, i.e. in a top-down-manner (beginning from the top-level
document component). The run-time evaluation process of such selection methods will be
described in detail in Section 4.5.

Parameter Substitution While the concept of adaptation variants allows to adjust vari-
ous component properties to parameters of the actual usage context, in some cases it is also
required to include the values of those parameters into the generated Web presentation. The
reason for this can be the intention to inform the user about his/her context or the need
for a better personalization of the Web application. For this reason the component-based
document format allows to utilize parameter substitution. As an example, the code snippet
shown in Listing 4.7 depicts a text component, the content of which is parameterized by the
context parameter LastName denoting the surname of the current user. When substituted
by the surname of the author of this thesis following text would be created: “You are logged
in as Mr/Ms Fiala.”.

Component (variants) combined with selection methods and parameter substitution allow
to describe the adaptation behavior of parts of a Web presentation in a declarative component-

78 c© Copyright TU Dresden, Zoltán Fiala

4.3. Adaptation Support

1 <aco:AmaTextComponent name="GreetingText" layer="Media">
2 <aco:MetaInformation>
3 <amet:TextMetaData>
4 <amet:value>
5 You are logged in as <aada:UserParam>Salutation</aada:UserParam>
6 <aada:UserParam>LastName</aada:UserParam>.
7 </amet:value>
8 </amet:TextMetaData>
9 </aco:MetaInformation>

10 </aco:AmaTextComponent>

Listing 4.7: Context parameter substitution example

wise manner. Nevertheless, the complexity of their underlying XML grammar makes it
very difficult to manually author such logical expressions and calls for intuitive visual tools
facilitating the graphical definition of appropriate XML documents. For this purpose the
AMACONTBuilder, a visual authoring tool for component-based Web documents will be
presented in Section 5.2.

4.3.2 Describing Adaptive Layout

In order to describe the spatial arrangement (layout) of components, the component-based
document format allows to attach XML-based layout descriptions [Fiala et al. 2003a] to
them. Inspired by the layout manager mechanism of the Java language (AWT and Swing)
and the abstract user interface representations of UIML [Abrams and Helms 2002] or XIML
[Puerta and Eisenstein 2002], they describe a client-independent layout allowing to abstract
from the exact resolution of the browser’s display. Note that layout managers of a given com-
ponent only describe the presentation of its immediate subcomponents which encapsulate
their own layout information in a standard component-based way.

The available layout managers are depicted in Figure 4.2. OverlayLayout allows to
present components on top of each other. BoxLayout lays out multiple components ei-
ther vertically or horizontally. BorderLayout arranges components to fit into five regions:
north, south, east, west, and center. It is especially useful to specify the layout of Web
presentations containing a header, a footer, sidebars, and a main content area. Finally,
GridTableLayout enables to lay out components in a grid with a configurable number of
columns and rows. Though it can be also realized by nested BoxLayouts, it was imple-
mented separately because Web applications often present dynamically retrieved sets of data
in a tabular way.

The code snippet in Listing 4.8 depicts a possible layout description of the content unit
from Listing 4.2 based on the layout manager BoxLayout. The contained image component
(aligned right) and the text component (aligned left) are arranged above each other, taking
30 and 70 percent of the available vertical space. Note that the alay namespace references
the XML schema definition AmaLayout.xsd which specifies the possible layout managers and
their specific attributes.

Layout managers are formalized as XML tags with specific attributes [Fiala et al. 2004a].
Two kinds of attributes exist: layout attributes and subcomponent attributes. Layout at-
tributes declare properties concerning the overall layout and are defined in the corresponding
layout tags. As an example the axis attribute of BoxLayout (see line 5 in Listing 4.8)
determines whether it is laid out horizontally or vertically. Subcomponent attributes describe

c© Copyright TU Dresden, Zoltán Fiala 79

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

OverlayLayout BoxLayout

GridTableLayoutBorderLayout

Figure 4.2: Abstract layout managers

how each referenced subcomponent has to be arranged in its surrounding layout. For instance,
the align attribute of myImage declares it to be right-justified. Table 4.1 summarizes the
possible attributes of the layout manager BoxLayout by describing their names, role, usage
(required or optional), and possible values.

Layout
Attributes Meaning Usage Values

axis Orientation of the BoxLayout req. xAxis|yAxis
space Space between subcomponents opt. int
width Width of the whole layout opt. string
height Height of the whole layout opt. string
border Width of border between subcomponents opt. int

Subcomponent
Attributes Meaning Usage Values

align Horizontal alignment of subcomp. opt. left|center|right
valign Vertical alignment of subcomp. opt. top|center|bottom
ratio Space taken by subcomponent opt. percentage
wml visible Should be shown on same WML card? opt. boolean
wml desc Link description for WML opt. string

Table 4.1: BoxLayout attributes [Fiala et al. 2004a]

80 c© Copyright TU Dresden, Zoltán Fiala

4.3. Adaptation Support

1 <aco:AmaImageTextComponent name="myUnit" layer="ContentUnit">
2 <aco:MetaInformation>
3 <amet:LayoutProperties>
4 <alay:LayoutManager>
5 <alay:BoxLayout axis="yAxis" border="1">
6 <alay:ComponentRef ratio="30%" align="right">
7 myImage
8 </alay:ComponentRef>
9 <alay:ComponentRef ratio="70%" align="left">

10 myText
11 </alay:ComponentRef>
12 </alay:BoxLayout>
13 </alay:LayoutManager>
14 </amet:LayoutProperties>
15 </aco:MetaInformation>
16 <aco:SubComponents>
17
18 </aco:SubComponents>
19 </aco:AmaImageTextComponent>

Listing 4.8: Layout manager example

Even though most attributes are device independent, two platform-dependent attributes
were also added in order to consider the specific card-based structure of WML presentations.
Note the optional attribute wml visible that determines whether in a WML presentation
the given subcomponent should be shown on the same card. If not, it is put onto a separate
card that is accessible by an automatically generated hyperlink, the text of which is defined
in wml description. This mechanism of content separation is used since the displays of
WAP-capable mobile phones are very small.

The exact rendering of media objects is done at run time by XSLT stylesheets that trans-
form components with such abstract layout properties to Web document fragments in a
specific output format (see Section 4.5). A number of stylesheets for converting those de-
scriptions to formats such as XHTML (and its different modules), cHTML, WML, etc. have
been developed [Fiala et al. 2003a, Hinz et al. 2004].

While adaptive layout managers support the automatic adaptation of abstract layout
descriptions to different output formats, component authors can also use them in combination
with adaptation variants, thus being able to specify even more precise layout adaptations that
are explicitly parameterized by the current usage context. For example, while the presentation
of a content unit containing a list of images could be realized as a GridTableLayout on a
browser with sufficient horizontal resolution, another client device with a small display width
should render it according to a vertical BoxLayout. The code snippet in Listing 4.9 depicts
such combined layout adaptation definition. The appropriate layout manager is selected
according to the horizontal resolution (denoted by the context parameter InnerSizeX) of
the current browser window. Thus, the layout of a document component can be adapted
independently of its other aspects, such as its subcomponent, hyperlinks, etc.

Again, the complexity of the XML code shown in Listing 4.8 and Listing 4.9 makes it
obvious that the manual creation of layout manager descriptions with a text or XML editor
might be a cumbersome task. For the visual authoring of adaptable layouts Section 5.2.4 will
introduce the Layout Editor module of the authoring tool AMACONTBuilder.

c© Copyright TU Dresden, Zoltán Fiala 81

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

1 <alay:LayoutManager>
2 <alay:Variants>
3 <aada:Logic>
4 <aada:If>
5 <aada:Expr>
6 <aada:Term type="gt">
7 <aada:UserParam>InnerSizeX</aada:UserParam>
8 <aada:Const>600</aada:Const>
9 </aada:Term>

10 </aada:Expr>
11 <aada:Then>
12 <aada:ChooseVariant>GridTableLayout_Variant</aada:ChooseVariant>
13 </aada:Then>
14 <aada:Else>
15 <aada:ChooseVariant>BoxLayout_Variant</aada:ChooseVariant>
16 </aada:Else>
17 </aada:If>
18 </aada:Logic>
19 ...
20 </alay:Variants>
21 <aada:Variant name="GridTableLayout_Variant">
22 ...
23 </aada:Variant>
24 <aada:Variant name="BoxLayout_Variant">
25 ...
26 </aada:Variant>
27 </alay:LayoutManager>

Listing 4.9: Combined context dependent layout adaptation

4.4 Document Component Templates

The document components introduced above are static, i.e. they represent a concrete piece
of (adaptable) Web content, such as a specific instance of an image (as a media component
instance with optional quality alternatives) or a chapter in an eLearning course (as a document
component instance). Still, in order to provide support for data-driven Web applications, like
online-shops, product presentations, e-galleries, etc., there is a need for components that are
created from dynamic data sources on-the-fly.

For this purpose so-called document component templates have been introduced. These
are component skeletons (i.e. component instances containing placeholders) that declare the
structural, behavioral and layout aspects of components independent of their actual con-
tent [Fiala et al. 2004b]. At run-time, component templates are extended (i.e. filled) with
content that is dynamically queried (retrieved) from a data source. Therefore, they are as-
sociated with a query that can be parametrized by arbitrary request and/or context model
parameters. As an example, the XML-code in Listing 4.10 describes a simple media compo-
nent template11:

The namespace t aco dictates that the component acts as a component template. The
query associated with it is described in the query attribute of its starting tag. In this par-
ticular case this is an SQL expression querying a table of a relational database that contains

11As a matter of course, the same mechanism is applicable for content unit component templates, document
component templates, and hyperlink component templates.

82 c© Copyright TU Dresden, Zoltán Fiala

4.4. Document Component Templates

1 <t_aco:AmaImageComponent name="productimage" type="template"
2 query="SELECT source, width, height
3 FROM productimages
4 WHERE ID=substitute(id)">
5 <aco:MetaInformation>
6 <amet:ImageMetaData>
7 <amet:source><t_temp:query field="source"/></amet:source>
8 <amet:width><t_temp:query field="width"/></amet:width>
9 <amet:height><t_temp:query field="height"/></amet:height>

10 </amet:ImageMetaData>
11 </aco:MetaInformation>
12 </t_aco:AmaImageComponent>

Listing 4.10: Simple component template example

images of a company’s products described by appropriate metadata12. The expression substi-
tute(id) references the id request parameter of the actual HTTP request. The values from the
corresponding result set are referred to as <t_temp:query field="myname"/>,where
myname is the name of a given field. As an example, the resulting media component’s source
attribute is substituted by the value of the database field picturesource.

While in this example all metadata attributes of the image component are dynamically
retrieved, note that it is also possible to define selected attributes as constants so that they
remain unchanged for all instantiations. Furthermore, it is also possible to parameterize a
template’s query by arbitrary context model attributes. In such a case these parameters are
substituted by their corresponding values before the query is executed, i.e. the data to be
inserted is queried in a personalized way.

The above example describes a single media component template, the actual content of
which is delivered by a dynamic data source. Still, in a data-driven Web application it
is not only required to dynamically retrieve single content (component) elements, but also
component sets, such as all books of a given author (in an electronic book store), or all
employees of a department (in an institutional Web site). For such cases the component-
based document format allows to define so-called iterative component templates. Again, a
simple example of a content unit containing a dynamic set of image components is depicted
in Listing 4.11.

The content unit component template defined in this example contains (as its subcompo-
nent) a dynamically iterated image component (see the iterate attribute in line 16). Con-
sequently, this media component is iterated (repeated) according to the size of the result
set delivered by the template’s query (line 3) so that each iteration is parameterized by the
corresponding result. To ensure that the resulting image components have unequivocal name
attributes the idField attribute denoting a unique identifier field in the query’s result set is
used (see line 1). It dictates that for each repetition (iteration) the name attribute of the
iterated image component is complemented with a unique postfix (in this case the ’id’ field
of the query). This explicit definition of the result set’s unique identifier field is necessary
since the component-based document format is not by definition associated with a given un-
derlying data model. On the other hand, the flexibility of the template mechanism allows to
refer to arbitrary data sources, and even to different ones within the same component-based

12The concept of component templates was realized for SQL-based queries on relational databases but can
be easily extended for other data sources such as XML or RDF databases in a straightforward manner. In
Section 5.3.2 it will be shown how component instances can be automatically generated based on RDF data.

c© Copyright TU Dresden, Zoltán Fiala 83

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

1 <t_aco:AmaListComponent name="productimagelist"
2 type="iterativeTemplate"
3 query="SELECT id,source,width,height FROM
4 productimages"
5 idField="id">
6 ...
7 <alay:LayoutManager>
8 <alay:BoxLayout axis="yAxis">
9 <t_alay:ComponentRef iterate="yes">

10 picture
11 </t_alay:ComponentRef>
12 </alay:BoxLayout>
13 </alay:LayoutManager>
14 ...
15 <aco:SubComponents>
16 <t_aco:AmaImageComponent name="productimage" iterate="yes">
17 <aco:MetaInformation>
18 <amet:source><t_temp:query field="source"/></amet:source>
19 <amet:width><t_temp:query field="width"/></amet:width>
20 <amet:height><t_temp:query field="height"/></amet:height>
21 </aco:MetaInformation>
22 </t_aco:AmaImageComponent>
23 </aco:SubComponents>
24 </t_aco:AmaListComponent>

Listing 4.11: Iterative component template example

document.
As the resulting content unit contains a set of image components, their spatial arrangement

has to be specified, as well. However, since the number of these subcomponents is not known
at authoring time, only the layout managers BoxLayout (with an initially undefined number of
cells) and GridTableLayout (with only one predefined dimension) are allowed and the missing
dimensions have to be automatically computed at run time when evaluating the template’s
query. In the particular example shown in Listing 4.11 a vertical BoxLayout is used.

At run time (see Section 4.5), component templates are dynamically filled with content
according to their queries as well as the actual state of the corresponding request parameters.
Since component templates might aggregate other component templates, this evaluation pro-
cess is performed recursively and results in dynamically generated component instances, i.e.
the “placeholders” in the original templates (component skeletons) are substituted by the ac-
tual query’s specific results. Thus, after being evaluated, component templates can be treated
in the same way as “conventional” static components. Furthermore, while the examples in
Listings 4.10 and 4.11 contain select queries, it is also possible to define update queries in
component templates. In this case these queries can be used to add (or manipulate) data to
(in) a database.

Component templates provide an effective means for the creation of data-driven component-
based Web presentations. For their intuitive creation and manipulation a visual authoring
tool called the AMACONTBuilder will be introduced in Section 5.2.

84 c© Copyright TU Dresden, Zoltán Fiala

4.5. Document Generation

4.5 Document Generation

The component-based document format allows to compose adaptive Web documents by creat-
ing, configuring, aggregating, and interlinking reusable components (or component templates)
on different abstraction levels. When requested by a particular user, such document structures
have to be automatically adjusted to his current usage context and delivered to his end de-
vice in an appropriate Web output format. For this purpose a modular document generation
architecture was developed [Fiala et al. 2003a, Hinz and Fiala 2004, Hinz and Fiala 2005].

The document generation architecture serves several purposes: 1) the automatic trans-
lation of component-based documents to Web presentations according to the actual usage
context, 2) the storage of this context information, 3) as well as its continual updating based
on user’s navigation and interaction history. While not being the central focus of this work,
the rest of this section describes this functionality in more detail13.

4.5.1 Pipeline-based Document Generation

As illustrated in the lower part of Figure 4.3, the process of document (presentation) genera-
tion is based on a stepwise pipeline concept14. According to the component-based document
format introduced above, its inputs are complex document component instances or document
component templates. They are retrieved from a component repository (or another source
aimed at dynamically generating components) according to a user request that is optionally
parameterized by a number of HTTP request parameters. Still unadapted, they encapsulate
all variants concerning their content, layout, structure, and interlinking.

In the document generation pipeline document components are processed by a series of
transformations. Each transformation deals with a given application (or adaptation) concern
and produces output for the next transformation step until a final Web presentation is gen-
erated. Note that the possibility to use such a staged architecture is a natural consequence
of the clean separation of concerns, a basic design principle of the component-based docu-
ment format. While the modularity of the document generation pipeline allows for different
transformer configurations, Figure 4.3 depicts a typical one.

First, possible component references (to components in other XML documents) are re-
solved and hierarchical component structures are created. Second, whenever the processed
documents contain component templates, these are filled with instance data that is dynam-
ically retrieved by the on-the-fly execution of their appropriate queries. Subsequently, the
resulting component instances are subdued to a number of adaptation transformers. Param-
eterized by the current state of the context model (see Section 4.5.2), each of them considers
a certain adaptation aspect by the selection, configuration, or device-specific rendering of
component variants.

In Section 4.3 two mechanisms for specifying adaptation were mentioned: one for describ-
ing adaptation variants and another one for describing adaptive layout. Consequently, the
adaptation of document instances is also performed in two main stages. First, a transformer
aimed at processing components containing adaptation variants is invoked. It handles all
appropriate selection methods in a recursive (top-down) manner and keeps only the selected

13The document generation architecture, its context modeling framework, as well as the investigation of its
performance issues is a primary research focus and contribution of Michael Hinz. This section describes these
topics as detailed as required to understand the overall context of the work presented in this thesis. For more
information we refer to the corresponding publications.

14Note that this stepwise pipeline concept corresponds to the architectural style “staged architectures”,
proposed by Aßmann [Aßmann 2005] for active documents (see Section 3.2.9)

c© Copyright TU Dresden, Zoltán Fiala 85

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

Pipeline-based Document Generation

Context Model

Context Modeling

Request

Transform
component

template

evaluation

Rendering
XHTML.full

XHTML.basic

XHTML.MP

WML

Component

Repository

Session

Profile
Device

Profile

Update

Location

Modeling

Device

Modeling

Adaptation

Client Device

...

Profile

User

Modeling

Transform
adaptation

of

component

variants

Sensor Components

Inter-

action
Sensors

Location

Sensors

Device

Properties
Sensors

Device Properties / UAProf

User Position

User Interactions

Transform
resolve

comp.

references

Figure 4.3: Overview of the document generation architecture

content variants in the processed XML stream, i.e. all other variants are omitted from the
processed document. The result of this transformation step is a final component hierarchy
without adaptation variants.

After all component variants and conditions are evaluated, the last transformer creates
a Web page in an output format supported by the user’s browser device. For instance, a
BoxLayout in XHTML is realized by means of a table (and its specific attributes) with either
one column or one row. However, not all layout managers can be visualized properly on all
devices. As an example, since PDAs or WAP phones have very small displays, a horizontal
BoxLayout is automatically converted to a vertical arrangement of subcomponents on those
devices. This kind of adaptation is performed by the system, i.e. no explicit specification from
the author is needed. The document generation pipeline was realized based on the Cocoon
publishing framework [Ziegeler and Langham 2002].

4.5.2 The Context Model

The information describing the actual user and his usage context is stored in the extensible
context model (see the middle part of Figure 4.3). It is represented in XML and consists
of a set of context profiles15, each maintaining up-to-date data on a given user/context
feature. The structure of context profiles relies on CC/PP (Composite Capability/Preference
Profiles [Klyne et al. 2003]), an RDF grammar for describing device capabilities and user
preferences in a standardized way. Still, while the original CC/PP specification defines a

15While some literature uses the notion of a user profile or context profile for describing usage data that is
static with regard to a Web session, the profiles of the context model may contain both static and dynamic
information. The update process of context information will be described in Section 4.5.3.

86 c© Copyright TU Dresden, Zoltán Fiala

4.5. Document Generation

profile as a flat two-level hierarchy of components and their attributes that are represented
as (sets of) literals, it is allowed to utilize arbitrary deep XML structures for describing
component attributes. As a general grammar, CC/PP makes no specific assumptions on
concrete context characteristics. Therefore, for each profile a corresponding schema (e.g.
expressed by an XML Schema or RDFS declaration) has to be provided.

Since the component-based document model is not bound to a specific application domain,
the context information used in a given adaptation scenario is also typically very application
specific. Therefore, the context model can be arbitrarily extended by the introduction of
new context profiles, each specified by a given schema definition. Still, there are also some
predefined profiles that can be generally used for a broad range of ubiquitous and context-
aware adaptive Web presentations. The following list gives a representative overview of them.

• The Identification Profile provides basic personal information about the user, such
as his name, login ID, email address, age, etc. This data is typically static with regard
to a given browsing session and can be acquired by explicitly asking the user e.g. in
the beginning of a Web session. For example, the login ID of the user is determined
when he starts his browsing session. As a matter of course, the usage of this profile for
adaptation purposes is optional.

• The Device Profile contains technical information describing the user’s client device.
It is represented on the basis of the WAP User Agent Profile (UAProf [Wir 2001]), a
common CC/PP vocabulary aimed at describing WAP devices. However, to support a
broader range of mobile devices (e.g. PDAs) specific extensions of UAProf have been
made [Hinz et al. 2004].

While parts of the Device Profile (such as the device’s hardware platform) are static
with regard to a Web session, note that it contains also parameters that can change
according to user interactions. For example, when the user resizes his/her browser
window, the appropriate context parameter should be updated, respectively. The ac-
quisition and update process of context model parameters according to user interactions
will be described in Section 4.5.3.

• The Location Profile stores the physical (geographical) location of the user. This
information is described both by means of physical coordinates as well as semantic
location information describing the semantic meaning of a location (e.g. the Multimedia
Chair of the Dresden University of Technology) and is retrieved from a landmark store.
For more information on the appropriate location context descriptors the reader is
referred to [Hinz and Fiala 2005].

• The Session Profile collects information on the actual user’s browsing and interaction
history within a component-based Web presentation. Its main goal is to track user
access information, such as the number of the user’s previous sessions in a given ap-
plication, the unique identifiers of the document components he already visited as well
as the interactions he performed on selected media components (e.g. starting a video,
enlarging an image component, etc.). This profile is automatically updated at each
user request and is an important basis for the utilization of user modeling mechanisms
facilitating dynamic adaptation (adaptivity).

The example code in Listing 4.12 illustrates a CC/PP-based context model description.
Note that while in this case only a small excerpt from the Identification Profile and the
Device Profile is shown, the actual context description might contain an arbitrary number

c© Copyright TU Dresden, Zoltán Fiala 87

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

1 <ContextModel>
2 ...
3 <IdentificationProfile>
4 <ccpp:component>
5 <UserData>
6 <ID>fiala</ID>
7 <Title>Mr.</Title>
8 <Firstname>Zoltan</Firstname>
9 <Lastname>Fiala</Lastname>

10 <Age>29</Age>
11 </UserData>
12 </ccpp:component>
13 ...
14 <IdentificationProfile>
15 ...
16 <DeviceProfile>
17 <ccpp:component>
18 <HardwarePlatform>
19 <ColorCapable>Yes</ColorCapable>
20 <TextInputCapable>Yes</TextInputCapable>
21 <ImageCapable>Yes</ImageCapable>
22 ...
23 </HardwarePlatform>
24 </ccpp:component>
25 ...
26 <ccpp:component>
27 <SoftwarePlatform>
28 <CcppAccept-Language>de</CcppAccept-Language>
29 ...
30 </SoftwarePlatform>
31 </ccpp:component>
32 ...
33 </DeviceProfile>
34 ...
35 </ContextModel>

Listing 4.12: Extract from an example context model

of profiles. For more detailed information on the utilized context model and its profiles the
reader is referred to [Hinz et al. 2004, Hinz and Fiala 2005].

4.5.3 Support for Context Modeling and Interaction Processing

The pipeline-based document generation process supports adaptability (or static adaptation)
by adjusting complex document structures to available information describing the actual
usage context. However, to facilitate adaptivity (i.e. dynamic adaptation based on user’s
browsing behavior), there is a need for additional mechanisms. First, user interactions (or
other external events, such as bandwidth fluctuations) have to be acquired that might influ-
ence specific parts of the usage context and thus lead to a dynamic reconsideration of the
presentation. Second, the context model has to be updated based on this acquired informa-
tion, respectively.

To facilitate these mechanisms the document generation architecture provides a context
modeling framework that allows to utilize an extensible set of sensor components and context

88 c© Copyright TU Dresden, Zoltán Fiala

4.5. Document Generation

modeling components [Hinz et al. 2006] (see the upper part of Figure 4.3). Whereas the
sensor components aim at acquiring user interactions (such as following links, or interacting
document with components) device capabilities (e.g. information on the user’s client device
type or current browser window size) or other kinds of context information (e.g. location),
the context modeling components perform updates of the context model according to this
information on the server side. As a matter of course, the usage of a given context modeling
(or user modeling) strategy is typically strongly dependent on the given application scenario.
Still, the document generation architecture provides a number of generic facilities that can be
efficiently used for acquiring and processing interactions in a broad range of component-based
adaptive Web presentations.

4.5.3.1 Acquiring User Access Information and Device Capabilities

Whenever a user follows a link or submits a form in the generated Web presentation, the
request sent to the server contains standard HTTP request information (in form of request
parameters). Furthermore, the document generation architecture allows to automatically
extend this information by more detailed data gathered both on the user’s interactions as
well as his actual context (e.g. device capabilities and location information).

In order to gather user access in a component-based adaptive Web presentation, component
authors can configure selected components as “observed” by setting their watched attribute
to true at authoring time. Whenever such an observed component is included in the resulting
Web presentation (i.e. if it is not omitted by a certain selection method), the generated Web
page is automatically enriched with sensor components based on client side code fragments
aimed at tracking user interactions on those components. The fact that a component was
presented on the user’s browser is tracked as a “trivial” interaction with that component
(meaning the user saw that component). However, some media components allow for more
“complex” interactions (such as starting a video, enlarging an image, etc.).

When requesting another component-based Web document, the identifiers of the observed
components as well as the interactions performed on them are automatically sent to the server
side where the session profile is updated, respectively. Note that the utilization of such user
access information for adaptation purposes is a basic facility in adaptive hypermedia and Web-
based systems and was successfully applied in different application scenarios [Jörding 1999,
De Bra et al. 2002, Casteleyn 2005].

The acquisition of client device capabilities happens in a similar way as the acquisition
of user interactions, i.e. by the insertion of device capability sensors in form of client-side
code fragments. Again, the appropriate code fragments are automatically inserted into the
generated Web presentation and collect up-to-date information about the user’s browser
device (such as its type, supported media types, and plug-ins, current browser window size,
etc.) and location. The gathered information is encoded in a UAProf like representation and
integrated in the HTTP request by a client/server communication component for processing
that information on the server. For more information on the technical realization of these
mechanisms the reader is referred to [Hinz and Fiala 2005].

4.5.3.2 Context Modeling

As described above, the HTTP requests originating from the client contain besides standard
request parameters additional information describing user interactions, device characteris-
tics, etc. Before the next hypermedia page is generated, this information has to be processed

c© Copyright TU Dresden, Zoltán Fiala 89

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

and the context model updated, respectively. For this purpose the document generation ar-
chitecture allows utilizing an extensible set of context modeling components. Providing a
well-defined interface for accessing the request parameters (incl. the information delivered
by the sensor components) and manipulating the context model, these components can be
programmed or configured to perform arbitrary context model updates based on the newly ac-
quired information. Furthermore, they can also be used to implement server-side application
logic, such as performing a database query, invoking a Web service, etc.

The currently existing repertoire of context modeling components comprises modules for
device modeling (aimed at updating the device profile), location modeling (for storing the
exact geographical position of the user in the context model) as well as a number of solutions
for user modeling [Hinz and Fiala 2005] that can be configured and activated depending on
the current application scenario. As an example, in a prototypical component-based Web
presentation for an online video store a user modeling algorithm based on the incremental
learning algorithm CDL4 [Shen 1996, Hinz et al. 2004] was successfully utilized, allowing to
predict user’s preferences based on their interactions with media objects. Nevertheless, in
order to support a broad number of context modeling mechanisms, it is also possible to
implement and easily integrate new context modeling components.

When the process of context modeling was performed a new component-based document
is retrieved and put through the presentation generation pipeline, respectively. This might
be an already existing component-based Web document (or document template) from the
component repository, but it is also possible to redirect the request to a backend application
that dynamically generates such a document. Thus, a component-based Web presentation
can be also effectively used as the adaptive front-end for a more complex back-end application.
Such a scenario will be described in more detail in Section 5.3.

4.6 Summary and Model Benefits

This chapter a presented concern-oriented component model for dynamic adaptive Web docu-
ments. The concept of declarative document components was introduced and a corresponding
XML-based component-description language was presented. The different component layers
addressing both different application concerns and adaptation facilities were explained by a
number of examples. Furthermore, a pipeline-based document generation architecture for the
on-the-fly publishing of component-based Web presentations was also briefly described.

Before turning to the authoring process of component-based adaptive Web presentations
and its tool support in Chapter 5, the rest of this section summarizes selected important
aspects and characteristics of the document model. First, Section 4.6.1 describes its main
analogies and differences to the already presented hypermedia reference models Dexter and
AHAM. Then, Sections 4.6.2 to 4.6.5 recapitulate a selection of its main benefits, among them
component reuse and configurability, adaptation support, extensibility, as well as support for
Web annotations16.

16In Section 3.2.10, a number of requirements towards component models for adaptive Web applications
were mentioned, which also served as the basis for the design of our own model. Note, however, that this
section recapitulates only a selection of those aspects. Other issues (e.g. the separation of concerns, device
independence, or template support) were already in detail discussed throughout this chapter and thus do not
need further emphasis.

90 c© Copyright TU Dresden, Zoltán Fiala

4.6. Summary and Model Benefits

4.6.1 The Component Model vs. Dexter and AHAM

In Chapter 2, the two reference models Dexter and AHAM were introduced to capture the
main characteristics of (adaptive) hypermedia systems. Since the concern-oriented compo-
nent model presented in this chapter is an approach aimed at implementing adaptive Web
applications, this section summarizes its main analogies and differences to those reference
models.

First, we note that the concept of document components corresponds to the component
concept of Dexter. Nevertheless, by the introduction of different component layers, our model
provides a more explicit typing as well as a fine-grained consideration of different concerns
involved in a Web or hypermedia application. Furthermore, whereas Dexter keeps the Within-
Component layer unspecified, the media component layer of our model specifies in detail the
supported atomic content elements and the specification of their attributes. Moreover, while
Dexter considers components to be static with regard to their content (and is thus mainly
applicable for static hypermedia presentations), the concept of component templates (in our
model) supports even data-intensive applications.

Another similarity of our model to Dexter (and AHAM) is the consideration of hyperlinks
as components. However, in contrast to both reference models, hyperlinks with several end
points and/or bidirectional references are not supported. The reason for these restrictions
is the goal to explicitly consider the specific characteristics of the World Wide Web as a
hypermedia system (see Section 2.1.3).

The concept of abstract layout descriptions (layout managers) corresponds to Dexter’s
presentation specifications. Yet, instead of being separated from the actual components (e.g.
as part of a specific Run-Time layer), it is one of their inherent properties.

Finally, similar to the Teaching Model of AHAM, the concern-oriented component model
also sets a great store by supporting adaptation. However, whereas the adaptation rules
of AHAM are stored as separate entities, the concern-oriented component model considers
them as parts of components allowing for their adaptation in a component-based manner.
Moreover, whereas AHAM (and its reference implementation AHA!) mainly focus on the con-
ditional inclusion/exclusion or the annotation of components, our model allows to implement
a broader range of adaptation techniques. As will be described in Section 4.6.4, the combi-
nation of component templates, abstract layout descriptions, and their conditional variants
allows to implement most of the adaptation techniques introduced by Brusilovsky (see again
Section 2.2).

4.6.2 Support for Component Reuse and Configurability

A very important aspect of effectively engineering Web sites is the reuse of formerly de-
veloped artefacts. However, the current coarse-grained document-oriented implementation
model of the Web makes it difficult for authors to identify and efficiently reuse configurable
content fragments of a Web presentation [Gaedke et al. 2000]. The component-based doc-
ument model presented in this chapter tries to solve this problem by defining fine-granular
Web components for creating Web applications. By encapsulating their properties and func-
tionality in a component-wise manner, they can be easily reconfigured and thus be utilized
in different application scenarios.

The level-based structure of the document model supports the effective reuse of compo-
nents of a certain level in components on higher levels. For instance, an adaptive image
component being capable to adjust itself to the current screen size can be reused as a “black-
box” in different content units. Similarly, a dynamic content unit arranging a list of pictures

c© Copyright TU Dresden, Zoltán Fiala 91

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

in a tabular way might be easily reused by being filled with different image components. Fur-
thermore, the recursive nature of document components facilitates the reuse of component
trees of arbitrary depth and granularity. Since each component encapsulates its structure
(subcomponents and links), presentation (layout managers), and adaptation behavior (in
form of selection methods) in an inherent way, all this functionality is automatically “carried
with” when applying the component in another composition scenario.

As a matter of course, a crucial issue of the efficient reuse of Web implementation artefacts
is their ease of (re)configuration. Therefore, the description language of document compo-
nents provides a clear separation of independent concerns (content, structure, presentation,
navigation, adaptation) by utilizing separate descriptors (metadata interfaces) for configuring
all these different issues. Whereas e.g. in an HTML document all these aspects are “interwo-
ven” to a coarse-grained file-based resource, the component-based document model enables
component authors to configure or manipulate them separately. As an example, a component
developer might define two different layout variants for a component (e.g. one for a desktop
PC and another one for a handheld device) without influencing its content or interlinking.

4.6.3 Extensibility Support

As described in Section 4.2, the component-oriented document model rests upon a level-based
architecture. That is to say, all possible components are derived from the basic (abstract)
component types media component, content unit component, document component, and hy-
perlink component. Each of these abstract types has a number of predefined concrete derived
types (e.g. in the case of media components these are image component, text component,
structured text component, audio component, etc.). However, it is also easily possible to
introduce new component types on each abstraction level.

As an example, the introduction of a new media component type requires the extension
of the schema definition AmaComponent.xsd with a new component type (that inherits from
the abstract type AmaMediaComponent based on the substitution group mechanism of XML
Schema [Fallside and Walmsley 2004]) and the specification of its metadata properties in
the schema definition AmaMetaData.xsd. Furthermore, the existing layout stylesheets for
appropriately transforming the new media component descriptions into a given Web output
format (e.g. HTML, cHTML, WML) have to be adjusted, accordingly. All other functionality
(e.g. the ability to define adaptation variants, layouts, hyperlinks) is defined for the abstract
component definitions, i.e. it can be utilized by each instance of the new component type, as
well.

Besides component types, it is also easy to extend the component description languages
with new layout managers and adaptation logics. For instance, the definition of a new layout
manager type implies the extension of the schema definition AmaLayout.xsd by declaring
its layout attributes and subcomponent attributes (see Section 4.3.2). Furthermore, the ap-
propriate stylesheets for transforming abstract layout descriptions to a given output format
have to be extended. However, this concerns only the rendering of format specific container
elements (e.g. tables, lists, etc.) aimed at the presentation of the actual content represented
by the embedded media objects, the rendering of media components is not depending of the
actual layout manager.

4.6.4 Adaptation Support

As discussed in Section 4.3, the component-based document format supports two basic adap-
tation facilities: the possibility to define component alternatives (on different component

92 c© Copyright TU Dresden, Zoltán Fiala

4.6. Summary and Model Benefits

levels), as well as to describe the layout of components in an abstract and implementation
independent way. Though being simple adaptation mechanisms, note that these facilities
can be effectively utilized to realize a number of adaptation techniques. According to the
already mentioned taxonomies of Brusilovsky [Brusilovsky 1996, Brusilovsky 2001] as well as
Paterno and Mancini [Paterno and Mancini 1999], the following lists comprise the supported
content-level, link-level, and presentation-level adaptation facilities and their component-
based realization:

Content-Level Adaptation

• Support for page variants and fragment variants by the definition of content
alternatives on different abstraction levels

• Conditional inclusion of fragments by defining conditional variants for sub-
components

• Adaptation of media content by offering media components with quality al-
ternatives

• Adaptation of modality by providing content units with varying types of in-
cluded media elements

Link-level Adaptation

• Link Disabling based on the conditional inclusion/exclusion of hyperlink com-
ponents

• Link Removal by the conditional inclusion of both hyperlink components and
the media components serving as their anchors

• Link Annotation based on the conditional assignment of style classes to hyper-
link components

• Link Hiding based on the conditional assignment of style classes to hyperlink
components

• Link Generation by the dynamic inclusion of hyperlink components based on
context-dependent component templates

• Link Sorting by the dynamic inclusion and ordering of hyperlink components
based on context-dependent component templates

Presentation-Level Adaptation

• Support for layout variants based on conditional alternative layout manager
definitions

• Adaptive styling of pages and page fragments by utilizing alternative CSS
components

As can be seen, the adaptation support provided by our model go far beyond the capa-
bilities of related component-based and document-oriented approaches (see Section 3.2.10).
Furthermore, as was described in Section 4.5, it also supports the automatic generation of
Web presentations in different output formats, among them (X)HTML, cHTML, or WML.

c© Copyright TU Dresden, Zoltán Fiala 93

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

4.6.5 Support for Web Annotations

Annotating Web pages is an important aspect of asynchronous communication on the WWW.
Authors and visitors of Web applications attach notes to certain pieces of Web content in
order to remember things better, to communicate with each other or to manage information
more intelligently. Typical scenarios of Web annotations are Web-based learning systems
allowing students and tutors to communicate, distributed authoring environments supporting
the concurrent editing of content, and even product presentations, where users give feedback
to the system via personal remarks.

Existing annotation systems, like ComMentor [Röscheisen et al. 1995], CritLink [Yee 1998],
CoNote [Davis and Huttenlocher 1995], YAWAS [Denoue 1999], iMarkup [@imarkup], Anno-
tator [Ovsiannikov et al. 2000], WebWise [Grønbæk et al. 1999], etc. mainly focus on anno-
tating static Web pages which do not change their content, structure, and layout temporally.
In general, an annotation is clearly defined by the URL of the Web page containing it and
some anchor points within that page [Denoue and Vignollet 2000]. A significant disadvantage
of these tools is the lacking support for separation of content, structure, and layout. Annota-
tions are not attached to the contents itself, rather to the Web pages containing them. Notes
go lost, when the same content is presented on a different page, in a new context or with a
changed layout. Thus, this mechanism is not suitable for dynamic Web documents generated
at runtime for which no persistent state and no constant layout exists.

Abstracting from the coarse-grained model of current Web implementation languages, the
proposed document model and its document generation architecture support the creation of
annotations to reusable components. That is to say, the smallest objects to be annotated
are not whole Web pages but document fragments, i.e. media components, content units or
document components. When a user marks a Web page generated on the basis of Web com-
ponents, his annotations can be reversely mapped to the fine-granular content components
and stored as specific component metadata. This reverse mapping is supported by automat-
ically enriching the generated Web page source code (e.g. HTML) by appropriate semantic
markup and client-side Java script code fragments. Annotation anchors are unequivocally
located by the identifier of the corresponding component and some offset coordinates within
it. When the same component is used in another presentation - possibly on a different client
or in a different context - the attached annotations can be reused, too.

While not being a central issue of this thesis, we note that concept of attaching fine-
granular annotations to reusable, adaptive components was prototypically implemented in
an annotation system called DynamicMarks. For more detailed information on it the reader
is referred to [Fiala and Meissner 2003].

94 c© Copyright TU Dresden, Zoltán Fiala

Chapter 5

The Authoring Process and its Tool Support

“We shall not fail or falter; we shall not weaken or tire. Give us the tools and we will
finish the job.”1

The document model introduced in Chapter 4 allows to create adaptive Web presentations
from reusable implementation artefacts (components) that encapsulate adaptable content,
navigation, and layout on different abstraction levels. Still, even though component-based
reuse is crucial to Web Engineering, the development of adaptive Web applications of such
components is typically a complex task that requires systematic process models and appropri-
ate tool support [Fiala et al. 2004b]. Therefore, this chapter deals with the authoring process
of component-based adaptive Web presentations and its tool support2.

Independent of a given application domain, the proposed document model supports dif-
ferent Web application scenarios. Consequently, the resulting authoring process should not
be bound to a fixed process model or workflow, rather adjusted to the specific requirements
of the targeted application area. These requirements may vary depending on various factors,
such as the application’s type (e.g. static adaptive hypermedia presentation vs. data-driven
dynamic Web application), its targeted user group, size, complexity, etc. As a trivial ex-
ample, consider the case of a Web author aimed at the rapid development of a small set of
Web pages presenting static content on different end devices. He could be best suited by an
ad-hoc authoring process allowing to visually create adaptable content components and “plug
them together” to a set of Web pages. On the contrary, the development of a dynamic Web
Information System providing different features of adaptive navigation and presentation is a
significantly more complex Web engineering task. It should be based on a systematic process
model that considers separate concerns of the planned application (data, navigation, presen-
tation, personalization, device and context dependency, etc.) in a structured way. Thus, to
facilitate different development scenarios, there is a need for flexible authoring support.

The first part of this chapter (Section 5.1) deals with the structured authoring process
of component-based adaptive Web presentations. However, instead of suggesting an own
methodology, the chosen strategy is the adoption of existing hypermedia design methods
for this purpose. The main reason behind this approach is the observation that, given the
abstraction gap between high-level hypermedia design models and low-level implementation
entities (document components), even different methodologies can be utilized to develop
component-based adaptive Web applications [Fiala et al. 2004b]. This thesis focuses on an

1Winston Churchill (1874-1965)
2As discussed in Section 3.1, the overall life-cycle of adaptive Web applications encompasses different

activities, such as requirements engineering, design, implementation, testing, or maintenance. While the
author is aware of the importance of all related activities, the focus of this dissertation (and thus this chapter)
is on the model-based design and component-based implementation of adaptive Web sites.

95

Chapter 5. The Authoring Process and its Tool Support

important development scenario: the engineering of data-driven Adaptive Web Information
Systems (AWIS) from reusable components. Therefore, it adopts and extends the model-
based Hera Web design method [Vdovjak et al. 2003] to the context of component-based
Web engineering. The resulting design methodology and engineering process is called Hera-
AMACONT and supports the structured development of adaptive Web information systems
from reusable components. Considering the steps identified by the Hera design models as a
guideline, it is shown how component authors can systematically create, configure, aggregate,
and link document components (and templates) to complex adaptive Web presentations.
It is illustrated how different design issues concerning data, navigation, presentation, as
well as their related adaptation concerns can be taken into account at implementation in a
structured way. Thus, a possible model-based authoring process is proposed for the developers
of component-based adaptive Web presentations.

In order to efficiently put a given design or authoring process (such as the one dictated
by Hera-AMACONT) into practice, component authors need appropriate tools for creating,
configuring and aggregating components. To this end, the second part of this chapter (Sec-
tion 5.2) introduces the AMACONTBuilder, a modular authoring tool for the developers of
component-based Web applications. Based on an extensible set of graphical editor modules,
it allows to visually create, configure, and aggregate adaptive document components on dif-
ferent abstraction levels. Moreover, it also facilitates the creation of component templates,
thus allowing to author data-driven adaptive Web presentations. Independent of a specific
methodology, it is shown how it can facilitate different authoring workflows. Finally, selected
implementation and extensibility issues are also briefly presented.

While the AMACONTBuilder facilitates flexible component authoring (implementation)
independent of a specific design method, in some cases it is desirable to take a further step
from model-based component authoring to model-driven component generation and to add
automation to the overall process of design and component-based implementation. There-
fore, the third part of this chapter (Section 5.3) deals with the research question of how
a component-based implementation can be automatically generated on basis of a high-level
design specification in a model-driven way. Again, this is illustrated by example of the Hera-
AMACONT methodology. After identifying main automation requirements, an RDF(S)-
based formalization of the presentation design phase of Hera-AMACONT is provided. Ac-
cording to this formalization, high-level model specifications can be automatically mapped
to a component-based implementation, thus exploiting its flexible presentation and adapta-
tion capabilities. The resulting multi-stage development process and document generation
architecture are described in detail and exemplified by a prototype application.

Finally, Section 5.4 summarizes the resulting multi-stage Web engineering process and
provides a representative overview of already realized component-based adaptive Web appli-
cations.

5.1 Hera-AMACONT: Model-based Component Development
based on a Hypermedia Design Method

In recent years, different methodologies facilitating the structured design of complex Web
applications have been developed. A detailed overview of the most significant existing ap-
proaches was given in Chapter 3. As discussed there, most of them distinguish between the
conceptual design, the navigational design, and the presentation design of a Web applica-
tion. Furthermore, some of them even explicitly address selected issues of personalization
and adaptation.

96 c© Copyright TU Dresden, Zoltán Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

This section adopts the model-based Hera design method [Vdovjak et al. 2003] to the
context of component-based Web engineering. The resulting design methodology and engi-
neering process is denoted as Hera-AMACONT and supports the structured development of
data-driven adaptive Web applications (e.g. online-shops, e-galleries, etc.) from reusable im-
plementation artefacts. Note that Hera is suitable for this undertaking for different reasons.
First, its main focus lies on the specification of different kinds of adaptation in a Web In-
formation System [Frasincar et al. 2002]. Besides aspects of adaptability (static adaptation),
issues of adaptivity (dynamic adaptation) are also concerned [Frasincar 2005]. Second, Hera
uses Semantic Web technologies (RDF and RDFS) to explicitly formalize model descriptions.
Such a Semantic Web-based approach has a number of benefits: a more explicit description of
model semantics, better interoperability and (possibly) model verification support, as well as
the possibility to integrate existing ontologies. Furthermore, due to the usage of XML-based
models, an automatic translation of high-level Hera design models to a component-based im-
plementation appears to be also possible. Finally, in contrast to several other methodologies,
Hera foresees to specify the presentation aspects (layout, look-and-feel) of a Web application
at model level.

Therefore, based on a small running example, different phases of designing and imple-
menting component-based adaptive Web presentations are described. Considering the steps
identified by the (extended) Hera design models as a guideline, it is shown how component
authors can apply those concepts to systematically develop adaptive Web presentations out
of reusable document components. The main focus is on the question of how different adap-
tation issues (both static and dynamic) can be targeted in each design and implementation
step.

5.1.1 Conceptual Design

The first step of the Hera design method is the so-called conceptual design aimed at represent-
ing the application domain using conventional conceptual modeling techniques. It results in
the conceptual model (CM) consisting of a hierarchy of concepts, their attributes, and relation-
ships. A concept represents a certain entity in a particular application domain. It is further
characterized by concept attributes, each being typed. Besides basic types (e.g. Integer
and String), multimedia types (e.g. Image, Audio, Video) are also allowed, thus enabling
to assign representative media items to concept attributes. The CM can be expressed both
graphically and using RDFS [Brickley and Guha 2003]. For the graphical specification of
conceptual models, Hera provides appropriate modeling tools [Frasincar 2005].

The example application used throughout this chapter is a (small part of a) Web In-
formation System providing information on painters, their paintings, and painting tech-
niques [Fiala et al. 2004b, @ICWE2004Demo]. An excerpt of its underlying conceptual model
is depicted in Figure 5.1.

The concepts constituting the application domain are illustrated as dark ellipses. They
contain concept attributes denoted as light ellipses. As an example, the concept technique
(representing painting techniques) has two attributes: a name and a description. Concepts
are related to each other by typed concept relationships. For instance, a painting technique
is associated to a set of paintings, all inheriting from the concept artifact. This is an 1:n rela-
tionship of the type exemplified by. A painting (since inheriting from the concept artifact) is
characterized by its name, the year of its creation, and a corresponding picture. Furthermore,
via the relationship painted by, paintings are associated with painters that again inherit from
the abstract class creator.

c© Copyright TU Dresden, Zoltán Fiala 97

Chapter 5. The Authoring Process and its Tool Support

painted_by

exemplified_by created_by

painting

aname

artifact

description

cname

biography

painter

creator

picture

technique

tname
Set

subClassOf

Set

subPropertyOf subClassOf

Set

year

Figure 5.1: CM example [Fiala et al. 2004a]

The media types associated to the concept attributes are described in the Media Model
(MM), a submodel of CM [Fiala et al. 2004a]3. It is a hierarchical model composed of media
types. The most basic media types are: Text, Image, Audio, and Video. Figure 5.2 shows an
excerpt of the MM for the running example. The media types are depicted in dark rectangles.

picture

aname
tname

description

artifact

year

technique

media medi a

medi a

media medi a

condition condition condition

medi a

medi a

subClassOfsubClassOf

conditio n

LargeImageShortTextLongText

prf:client=PDAprf:client=PC

SmallImage

Text

Figure 5.2: MM example [Fiala et al. 2004a]

5.1.1.1 Adaptation at Conceptual Design

The Media Model aims not only at the assignment of media types to concept attributes,
it also allows to define media adaptations. These are based on simple Boolean expressions
(depicted as light rectangles in Figure 5.2) that reference attributes from the current usage
context and dictate the conditional usage of different media types.

In the running example, two conditions addressing the limited screen size constraints of
mobile client devices are used. One condition requires to use a long text for the technique

3Frasincar also refers to the Media Model as the so-called media vocabulary [Frasincar 2005].

98 c© Copyright TU Dresden, Zoltán Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

description and a large image for the artifact pictures on PCs. The other condition stipulates
that a short text for the technique description and a small image for the artifact pictures
should be used for PDAs. While in this particular example both conditions specify adapt-
ability (i.e. adaptation based on context parameters that are typically static with regard to
a Web session), note that media adaptations can be performed dynamically, as well. As an
example, the designer could specify different quality alternatives for a video depending on
the currently available bandwidth. Thus, in case of possible bandwidth fluctuations (e.g. in
a mobile environment), the usage of a given alternative could be dynamically reconsidered
even during a single browser session.

We note, however, that this adaptation of the media representation of concept attributes
concerns not only the data presented by a Web application (which is the actual focus of
conceptual design) but also its presentation. The reason for this is the fact that a media
object (e.g. an image) represents not only content but also inevitably presentation. As a
consequence, the media model of a Web application might be reconsidered or extended after
specifying its presentation design (in a later design step, see Section 5.1.5). Therefore, we
claim that the design of a Web application might be an iterative approach, allowing to refine
the separate design models in several turns.

5.1.2 Realization with Document Components

When developing adaptive Web presentations from document components, the conceptual
design step as proposed by Hera has to be accompanied by the creation or retrieval of media
instances that represent the identified concept attributes. These media instances (as well as
the metadata attributes required by the component-based document format for describing
their media properties) have to be stored in a structured data store so that they can be
dynamically presented in the resulting adaptive Web application. The structure of this data
source is to be derived from the CM, respectively. Furthermore, the appropriate media
component templates facilitating the dynamic presentation of the created media instances
have to be created.

In order to realize different media adaptations, component authors also have to reason
about alternative media instances with different quality (e.g. concerning their formats, band-
width, color depth, bit rate, size, etc.). According to Section 4.3.1, these alternatives have
to be defined as media component (template) variants with their corresponding selection
methods. For instance, a media component representing a painting’s picture should have two
variants, one for desktop devices and another one for handhelds.

5.1.3 Application Design

The application design step of Hera is the most important design phase dealing with the log-
ical, structural, and navigational aspects of a Web application. Similar to the navigational
models of other methodologies, its main goal is the specification of the overall hyperme-
dia structure of the resulting application, i.e. the design of navigational units (hypermedia
nodes and pages), their relationships (aggregation and interlinking), as well as corresponding
adaptation issues4.

4Recently, Hera’s application model was extended by mechanisms for the specification of form-based
user interactions [Frasincar 2005]. Still, the concepts described here focus on the basic Hera models, as also
published in [Fiala et al. 2004b, Fiala et al. 2004a]. It is claimed that the mentioned extensions are adoptable
for the context of component-based adaptation engineering, which is subject to ongoing cooperation.

c© Copyright TU Dresden, Zoltán Fiala 99

Chapter 5. The Authoring Process and its Tool Support

In order to model navigational units, Hera uses the notion of slices. As in the case
of RMM, a slice is a meaningful presentation unit that fulfills a certain communication
purpose [Isakowitz et al. 1995], i.e. it represents an abstract view over the content described
in the conceptual model that should be shown on a hypermedia node.

A slice is always associated with its owner concept which denotes the data (i.e. the concept
from the CM) portrayed by it. Furthermore, there are two types of slice relationships: slice
navigation (a hyperlink abstraction between two slices) and slice aggregation (a slice including
another slice). An aggregation relationship between two slices with different owner concepts
needs to specify the concept relationship between those concepts from the CM that made
such an embedding possible. In the case that the cardinality of this concept relationship is
one-to-many, the Set construct needs to be used. The most primitive slices represent concept
attributes and are also referred to as simple slices. Slices that aggregate other slices are called
complex slices. The most complex ones (called top-level slices) correspond to pages, which
contain all the information presented on the user’s display at a particular moment. The
creation of AMs is provided by graphical tool support. For a more thorough introduction to
Hera’s application model vocabulary the reader is referred to [Frasincar 2005].

aname

year

main

hyperlink

technique

picture

description

main

tname

painting

painting

exemplified_by

painted_by

picture

Set

painter

cname

biogr.

Figure 5.3: AM example

Figure 5.3 depicts (a small excerpt of) the application model of the running example
in a graphical way. It consists of two top-level slices, one presenting painting techniques,
the other paintings. As indicated by the underlying dark ellipse, the left top-level slice is
associated with the concept technique. It shows two attributes of that concept: its name
(tname) and description (description). Furthermore, it also contains a link list pointing to
the paintings exemplifying the given painting technique. As depicted in the picture, these
links are based on the concept relationship exemplified by. The starting anchor of each link
is represented by the picture attribute of the referenced painting concept. Since there are
several paintings associated with a technique, a Set construct is used. When following a
link, the user can navigate to the corresponding painting slice, a composite (top-level) slice
presenting the concept painting. This slice presents the actual painting’s picture, its name,
the year when it was painted, as well as (from the bottom slice) some information about
its painter. Note that besides the graphical representation (called the Application Diagram)
there exists also an RDFS-based formalization of the AM [Frasincar et al. 2002].

100 c© Copyright TU Dresden, Zoltán Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

5.1.3.1 Adaptation at Application Design

Adaptation at application design concerns the adjustment of the Web presentation’s logical
and navigational structure to the user and his usage context. Generally, different adaptation
issues can be considered in the AM. First, it is meaningful to adjust the coarse navigational
structure to varying device capabilities (e.g. desktop computer, PDA, cell phone, etc.) or user
profiles (preferences, interests, knowledge). Depending on this information the designer can
decide which concepts should be presented at all and how they should be assigned to different
interlinked slices. Second, the population of each specified slice with concept attributes (or
media types) can be adjusted, too. According to the preferences and/or used devices of
different users, different media types for presenting the same concept can be utilized. As
an example, take the case of two visitors, one of them preferring multimedia content, the
other rather textual information. When presenting a painter’s biography, the first one could
be shown a video and an audio sequence, the second one a detailed textual description.
Furthermore, dynamic adaptation (adaptivity) can also be targeted at this step. For example,
different versions of a painter’s biography could be presented in accordance with the user’s
changing knowledge on that painter: a long version at the user’s first visit and a short one
at his later visits. As a matter of course, these are only possible adaptation examples, the
consideration of a certain adaptation concern (device dependency, personalization, security,
etc.) depends on the designer’s choice.

In order to specify adaptation, Hera prescribes that one associates so-called appearance
conditions to slices [Frasincar et al. 2002, Frasincar 2005]. These are Boolean conditions
using attribute-value pairs from the current usage context. Two kinds of AM adaptation are
enabled: conditional inclusion of slices and link hiding. Conditional inclusion means that a
slice is included (and therefore visible) when it has a valid condition. Similarly, link hiding
refers to the mechanism that a link is only included when its destination slice is valid.

Figure 5.4 depicts another version of the application model shown above which is enriched
by adaptation definitions. Note that it contains three appearance conditions. The first
one (mentioning ExpertiseLevel) supports adaptability by including the painting technique’s
description only for Experts. The second one (mentioning imageCapable) refers to the device
profile and dictates that the pictures of paintings should be only shown on devices being
capable of presenting images. The third one (mentioning biography) defines adaptivity by
presenting different versions of a painter’s biography depending on the user’s knowledge on
that painter.

5.1.4 Realization with Document Components

There are important analogies between (the concepts of) Hera slices and adaptive document
components. Both represent meaningful presentation units bearing also some semantic role
(e.g. painting, painting technique, newspaper article) and are recursive structures enabling an
arbitrary deep hierarchy. Moreover, both top-level slices and top-level document components
correspond to hypermedia pages to be presented on the user’s display. Furthermore, both
may contain adaptation issues according to context model parameters.

Nonetheless, there are also significant differences. First, in contrast to slices, document
components also contain information describing their layout. However, as application design
concentrates on the navigation and does not deal with presentation issues, the specification
of these layout properties can (and should) be postponed to a later stage of the development
process (see Section 5.16). Second, whereas AM slices define the structure of presented con-
cepts on the schema level (i.e. independent of concrete instances of those concepts), document

c© Copyright TU Dresden, Zoltán Fiala 101

Chapter 5. The Authoring Process and its Tool Support

picture

aname

yeardescription

main

tname

painting

exemplified_by

painting

technique

hyperlink painted_by

picture

 Biography=true Biography=false

 ExpertiseLevel=Expert

Set

 imageCapable=yes

painter

biogr.

cname

painter

cname

painted_by

Figure 5.4: AM example with appearance conditions

components represent reusable implementation entities on the instance level. Still, note that
this gap can be bridged by considering the notion of component templates. As described in
Section 4.4 in detail, these are component skeletons declaring the structural, behavioral, and
layout aspects of components independent of their concrete content. For example, a com-
ponent author might create a component template for presenting dynamic information on
painters. Such a template can be instantiated for specific painters by dynamically querying
the Web application’s underlying data source, which was created accompanying its conceptual
design.

The mentioned analogies allow component authors to specify the aggregation hierarchy
of component templates in accordance to a given AM design. First, top-level slices have to
be mapped to top-level document component templates. Second, by unfolding slice aggre-
gation relationships in a top-down manner, subslices have to be mapped to “sub document
components” (or templates). In the case of simple slices, the media items (components)
representing the concept attributes associated with those slices have to be additionally con-
sidered. Furthermore, both Set structures (of simple and composite slices) as well as slice
navigation relationships (e.g. link lists) have to be taken into account. While there are dif-
ferent possibilities to map slice hierarchies to component template structures, we mention a
straightforward and easily automatable one:

1. A complex slice that contains other (complex or simple) subslices should be mapped
to a document component template. For its aggregated subslices, this mapping process
should be performed recursively. As already mentioned, top-level slices correspond to
top-level document components.

2. A simple slice (representing a concept attribute) has to be mapped to a document
component template that additionally contains a content unit that again contains one
or more media component templates. These media components correspond to the media
items representing the slice’s owner concept attribute, their types have to be determined

102 c© Copyright TU Dresden, Zoltán Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

by the media type(s) associated with that concept attribute in the Media Model (MM).
Integer and String attributes have to be mapped to text components, media attributes
to corresponding media components (image, audio, video, etc.).

3. Whenever a slice (complex or a simple) is part of a Set construct, the appropriate
component template that was assigned to it should be defined as an iterative template.

4. Finally, slice navigation relationships between two slices have to be mapped to hyper-
link components between the appropriate component templates. Again, when a slice
navigation relationship is based on a 1:n concept relationship, an iterative hyperlink
list has to be configured.

Figure 5.5 depicts this possible mapping process in a graphical (schematic) way by example
of the slice representing painting techniques. The types of the created component templates
are denoted by the abbreviations MC (media component), CU (content unit component)
and DC (document component). Furthermore, the mappings are illustrated as arrows, each
labeled by a number indicating the appropriate mapping rule from the above list.

TechniqueComp DC

Technique

TechniqueTNameComp DC

TechniqueTName

MediaContainer CU

PaintingPictureComp DC

PaintingPicture

 Hera Application Model

TextComp MC

tname

Component Templates

........

MediaContainer CU

MCImageComp

picture

iterative=”yes”

technique

description

main

tname

painting

exemplified_by

picture

Set

3

2

1

2

Figure 5.5: Slice to component template mapping

If the AM specifies adaptation aspects via appearance conditions, these have to be ex-
pressed in form of corresponding component variants and their selection methods (see Sec-
tion 4.3.1). Again, this can be done in a straightforward way. Whenever a slice is provided
with a Boolean appearance condition, the component associated to it has to be made a vari-
able component containing only one variant. Moreover, according to the slice condition a
selection method in the if-then style has to be composed (see Section 4.3.1). Note, how-
ever, that the concept of adaptation variants supported by the component-based document
model allow for more sophisticated kinds of adaptations than simple appearance conditions
attached to navigational elements. To optimally address different client capabilities or user
preferences, component authors might flexibly define different variants of the created compo-
nent templates on all abstraction levels.

c© Copyright TU Dresden, Zoltán Fiala 103

Chapter 5. The Authoring Process and its Tool Support

Furthermore, whenever a given adaptation specification concerns adaptivity, component
authors also have to reason about how to update context model parameters according to users’
interactions. For this purpose the context modeling components of the document generation
architecture can be utilized (see Section 4.5.3). For instance, the number of a user’s requests
to a document component instance (e.g. representing a painter’s biography) can be easily
tracked in the Session Profile (see Section 4.5.2). This information can be utilized to define
the appropriate component variants and their corresponding selection methods.

5.1.5 Presentation Design

The presentation design step of Hera bridges the logical level and the actual implementation
by introducing the implementation independent Presentation Model (PM). Complementary
to the AM, where the designer is concerned with organizing the Web application’s overall
structure and identifying which concept attributes from the entities of the application domain
should be included in slices, the PM specifies how and when the identified slices should be
displayed.

painting

aname

picture

year

painter

cname biogr.

aname

year

main

picture

painting

painted_by

painter

cname

biogr.

Figure 5.6: Presentation diagram (PD) example: assigning regions to slices

The PM is described by a presentation diagram (PD) consisting of regions and their
relationships. A region is an abstraction for a rectangular part of the display area where
the content of a slice is to be displayed. During presentation design, the slices introduced
in the AM are mapped to regions (and subregions). The PD specifies the organization of
regions in an informal, graphical way by means of region relationships that describe their
relative position (e.g. above, below, left/right from) to each other [Frasincar et al. 2001]. As
an example, Figure 5.6 depicts a possible presentation diagram assigned to the painting slice
(see Figure 5.3). It dictates to display a painting’s name, picture, year, and painter below
each other and arranges the name and biography attributes of the painter in a horizontal
manner.

Note that at the time when the work described in this chapter was carried out there was
no RDF-grammar for expressing PDs in a formal way, nor were style design and adaptation
considered in the PM. These issues were addressed in form of the Hera-AMACONT model ex-

104 c© Copyright TU Dresden, Zoltán Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

tensions as part of the work presented in this thesis [Fiala et al. 2004a, Fiala et al. 2004b] and
will be described here, respectively. In the following subsection different issues of presentation
layer adaptation as well as a possible component-based realization of the presentation design
step are discussed. An RDF(S)-based formalization of the corresponding Hera-AMACONT
PM will be provided later in Section 5.3.1.

5.1.5.1 Adaptation at Presentation Design

As personalization and adaptation become prominent issues of Web engineering, it is in-
evitable to address adaptation at presentation design. Still, while adaptation has been ex-
tensively considered in navigation design (see Chapter 3), adaptation in the presentation
layer has not been a central issue of Web design methodologies, yet. Nevertheless, it is in a
lot of scenarios necessary to adjust a Web application’s presentation aspects. As the most
significant issues the following can be mentioned:

1. An important adaptation target is the spatial placement (layout) of the content elements
of a Web page. Depending on varying user preferences and/or device characteristics
(e.g. screen size, supported document formats, interaction techniques, etc.), they should
be displayed differently. Possible layout adaptation techniques are:

Reorganization: In this case the arrangement of content elements is adapted. Most
typically, the purpose of this adjustment is to optimally fit a Web presentation
to the varying display sizes of different client devices. Whereas for example the
tabular arrangement of content may look well on conventional desktop comput-
ers, it could cause a lot of undesirable horizontal scrolling when being browsed on
handhelds with limited display size. Similarly, the writing scheme of a Web presen-
tation’s language (e.g. left-to-right, right-to-left, horizontal, or vertical) can also
significantly influence the arrangement of content elements like headers, footers,
navigation bars, etc. [Evers and Day 1997].

Exclusion: Information being unsuitable for a particular browser (e.g. a picture gallery
for a monochrome mobile phone) or content elements without an important se-
mantic meaning (e.g. company logos in an online shop) can be excluded from Web
presentations on mobile devices with small displays or low bandwidth connections.

Separation: As a (less strict) form of exclusion, it can be advantageous to put certain
content pieces onto separate pages and automatically create hyperlinks to them.
This mechanism is very useful to keep the structure of Web pages while providing
a lot of information easily understandable on handhelds [Hwang et al. 2002].

2. A further adaptation target is the corporate design (i.e. the “look-and-feel”) of a Web
application, which is typically determined by decorative elements such as logos, back-
ground colors, font parameters (size, color, type), buttons, etc. Though not influencing
the logical structure of a Web site, such design elements are important to appropriately
convey the published information to the user. Consequently, presentation designers
might provide alternative style variants in order to address different user properties
and usage contexts. As possible adaptation aspects the following can be mentioned:

Style preferences: The visitors of a Web presentation might have different style pref-
erences based on their interests, education, and/or age. While e.g. a site addressing
little children typically utilizes vivid colors and decoration elements [Nielsen 2002],

c© Copyright TU Dresden, Zoltán Fiala 105

Chapter 5. The Authoring Process and its Tool Support

Web applications targetting a more “serious” audience are characterized by rather
modest and simple layouts.

Cultural background: The cultural background of the targeted audience is also an
important presentation adaptation feature. Barber and Badre provide an overview
of so-called cultural markers, i.e. “interface design elements that are prevalent, and
possibly preferred, within a particular cultural group” [Barber and Badre 1998].
As an example, specific color combinations, symbols, or decoration elements can
have varying interpretations in different countries and cultures.

Accessibility issues: A further adaptation aspect to be considered at style design
is accessibility. In order to appropriately address users with visual impairments
(limited level of sight, color blindness, etc.), it requires to offer Web presentations
with different color schemes, font types, and sizes. The World Wide Web Consor-
tium (W3C) tackles this issue by offering a number of Web Content Accessibility
Guidelines [Chisholm and Vanderheiden 1999] for Web designers and developers.

Environment characteristics: Web applications developed for mobile scenarios might
adapt their visual appearance based on selected characteristics of the current en-
vironment. As an example, the contrast or brightness of a Web page might be
adjusted to whether the user is situated in an indoor or anoutdoor context.

Specific events or time periods: Finally, the corporate design of a Web site might
be also adjusted to specific events or time periods, such as seasons, anniversaries,
or festivals. As a typical example, Web-based online shops or communities are
often decorated with a dedicated layout at festivals like Halloween or Christmas, at
Valentine’s day, or even during sport events like e.g. football world championships.

3. Third, the qualitative adjustment of the media objects included in a Web site (e.g. to
the display capabilities of different end devices) is also an important adaptation issue
to be considered at presentation design. Still, since the assignment of media types to
the application’s conceptual model is specified in the already presented Media Model
(see Section 5.1.1.1), these adaptations should be also defined there, respectively. As
already mentioned, the adaptation definitions concerning the media model might be
modified or extended at presentation design.

4. The aforementioned examples represent static adaptation. However, in some cases it
is meaningful to consider dynamic adaptation, i.e. adaptation according to parameters
that may change while the Web presentation is being browsed. As a possible scenario (in
presentation design) we mention the dynamic reorganization of presentation elements
on a page when the user resizes his browser window or the automatic reconfiguration of a
Web presentations color scheme (colors, contrasts, brightness) when a mobile user enters
a differently illuminated area (e.g. changing from an outdoor to an indoor context).

5.1.6 Realization with Document Components

The aggregation hierarchy of component templates was determined at application design.
Now, based on the guidelines of the graphical presentation diagram, component authors are
expected to specify the layout attributes of those component templates as well as the cor-
porate design of the resulting presentation. Furthermore, to address the possible adaptation
issues mentioned above, they also have to consider layout and design style variants.

106 c© Copyright TU Dresden, Zoltán Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

As mentioned in Section 4.3.2, the component-based document format provides an XML-
based mechanism for specifying the spatial adjustment of subcomponents within their con-
tainer components in a size and client-independent way. Those abstract layout definitions
support the automatic conversion of component structures to Web presentations in different
output formats and are well suitable for implementing an abstract presentation design con-
sisting of a hierarchy of rectangular regions. Consequently, the spatial relationships between
regions defined in the PD have to be mapped to such component layout descriptions.

Again, this mapping can be performed in a straightforward way. Beginning at top-level
document component templates and visiting their subcomponents recursively, one has to
declare for each component template how its immediate subcomponents are arranged. As an
example, the component templates containing the concept attributes describing a painting
(see in Figure 5.6) can be arranged according to a vertical BoxLayout scheme. Similarly, the
name and the biography attributes of the corresponding painting’s painter can be organized
based on a horizontal BoxLayout. When defining such layout managers, component authors
can use their various configuration options (widths, heights, alignments, etc.) which were
described in detail in Section 4.3.2.

The corporate design of a component-based presentation can be specified by the cre-
ation and configuration of corresponding CSS media components. The CSS standard of the
W3C [Bos et al. 2006, Lie 2005] allows for the definition of a Web presentation’s design and
style elements (background colors, font sizes and types, link colors, etc.) and is thus perfectly
suitable for this purpose. A CSS media component contained by a composite document com-
ponent specifies the corporate design of the content it displays. Whenever there are several
CSS components in a component-based Web document, they can redefine each other’s style
definitions by the order of their occurrence in the overall component hierarchy.

In order to cope with the adaptation issues described in Section 5.1.5.1, component authors
might create different layout variants for components, each bound to a specific adaptation
condition. For instance, the typical small display size and horizontal resolution of handheld
devices would require to present not only the attributes of a painting, but also the names and
the biographies of their painters below each other (i.e. according to a vertical BoxLayout
scheme). Similarly, the corporate design of a component-based presentation can be also
adapted by specifying different CSS media component variants and their selection methods.

After this authoring step, the content, the structure, and also the layout layout managers
of the resulting components (templates) are fully specified. They manifest a component-based
implementation of the corresponding design models.

5.1.7 Summary

This section exemplified the development process of component-based adaptive Web presenta-
tions according to the design phases dictated by the model-based Hera design method. Based
on a small example application, it was shown how during the phases of design and implemen-
tation different application concerns (content, navigation, presentation) as well as correspond-
ing adaptations (both static and dynamic) can be taken into account systematically. That
is to say, a possible model-based authoring process for the developers of component-based
adaptive Web presentations was introduced5. As a short summary, Table 5.1 recapitulates
the identified design steps, their “implementation recipe” based on adaptive Web document
components, but also the adaptation issues to be addressed in each development phase.

5A summary of component-based Web application prototypes realized based on the authoring process and
tool support described in this chapter will be given in Section 5.4.2.

c© Copyright TU Dresden, Zoltán Fiala 107

Chapter 5. The Authoring Process and its Tool Support

Design & Modeling Component-based
Implementation

Conceptual specification of the creation, retrieval and structured
Modeling application’s domain model storage of media components

representing concept attributes

CM Adaptation adaptation of media quality creation of media component
variants with quality alternatives

Application design of the application’s creation and interlinking of composite
Modeling navigational structure by components (content units, document

slices and slice relationships components) and templates

AM Adaptation adaptation of slice definition of alternatives for subcom-
aggregation and navigation ponents and hyperlink structures

Presentation design of the user interface definition of components’ layout
Modeling based on regions and managers and CSS styling

style definitions

PM Adaptation design of layout and style definition of alternative layout
adaptation managers and CSS components

Table 5.1: Summary of design and implementation phases

The mentioned development steps facilitate a structured design and implementation pro-
cess for component-based adaptive Web presentations. The resulting component templates
constitute a dynamic component-based hypermedia presentation realizing the different design
(and adaptation) issues expressed by the corresponding design models. Consequently, they
can be used as the input of the pipeline-based document generator introduced in Section 4.5.
As described there, for each user request the corresponding component template is retrieved
and instantiated with the requested data. According to the current usage context, it is then
subdued to a series of transformations, each considering a certain adaptation aspect. The
resulting Web presentation is automatically adjusted to the actual usage context.

Note, however, that the development process presented in this section is only one possible
approach for data-driven component-based adaptive Web applications. As mentioned before,
the abstraction gap between design methods and implementation entities (components) allows
to use different methodologies for developing component-based adaptive Web sites.

5.2 A Modular Authoring Tool for Component-based Adap-
tive Web Applications

As illustrated in the previous section, the component-based document format and its docu-
ment generation architecture provide a sound basis for the development and publication of
adaptive Web presentations. Based on a structured authoring process (e.g. Hera-AMACONT),
authors can compose adaptive Web applications from reusable components in a disciplined
way, by subsequently taking into account different design concerns, their adaptation issues, as
well as their corresponding “implementation recipes”. Still, the complexity of the component-
based document format’s underlying XML grammar calls for an intuitive authoring tool that
supports this composition process in a graphical way. Such an authoring tool should provide

108 c© Copyright TU Dresden, Zoltán Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

following functionality:

1. Visual authoring support: The authoring tool should offer graphical editor mod-
ules for the creation, configuration, and composition of document components. These
should hide the low-level details of the XML-based component description language
from authors, allowing to create component-based documents in a visual way.

2. Independent authoring of separate concerns: The authoring tool should provide
a number of specialized editors allowing to separately configure different component
properties (such as content, structure, layout, interlinking, adaptation) in different
phases of the authoring process.

3. Support for instance- and template-level authoring: The authoring tool should
facilitate the creation of both component instances and component templates. For
the latter case it should allow authors to intuitively access dynamic data sources and
configure the appropriate queries.

4. Preview functionality: In order to allow authors to test the currently created/edited
documents, the authoring tool should provide a flexible preview functionality depending
on the actual user, context, and device characteristics.

5. Flexible authoring workflows: Instead of being bound to a specific authoring pro-
cess (e.g. the one presented in Section 5.1), the authoring tool should provide a flexible
set of editor modules for the manipulation of different component types and properties.
Authors should have the freedom to flexibly use these editors based on the current
authoring scenario, thus being able to proceed based on different process models.

6. Extensibility: To cope with the flexibility and extensibility of the component-based
document format (see Section 4.6.3), the authoring tool should also be based on a
modular and extensible architecture. This should facilitate to integrate both alternative
editor modules for existing and new editors for future component types.

To fulfill these requirements, a graphical component authoring tool called the AMACONT-
Builder was developed [Fiala et al. 2005]. It is based on an extensible set of visual editor
plug-ins and allows to graphically create and compose document components on different
composition levels. Furthermore, it also supports the configuration of both their adaptation
variants and adaptive layout. Note, however, that as a tool designated for component author-
ing, the AMACONTBuilder is oriented at the phase of (component-based) implementation
in the overall Web engineering process (see Section 3.1). That is to say, instead of being
bound to a specific methodology (e.g. Hera-AMACONT), it allows to compose adaptive Web
components based on different authoring processes6.

This section gives an introduction to the AMACONTBuilder. First, its basic concepts
and main architecture is presented. Then, selected editor modules are described in more
detail, supporting different phases of the authoring process of component-based adaptive
Web presentations. Finally, a couple of implementation issues are briefly summarized.

6The issue of the model-driven generation of component-based adaptive Web applications based on Hera-
AMACONT models will be subject to Section 5.3.

c© Copyright TU Dresden, Zoltán Fiala 109

Chapter 5. The Authoring Process and its Tool Support

5.2.1 AMACONTBuilder: An Overview

The AMACONTBuilder is a modular authoring tool aimed at the visual development of
component-based adaptive Web applications. It is based on an extensible authoring frame-
work [Chevchenko 2003] that allows to edit arbitrary XML documents. The framework was
developed at the Chair of Multimedia Technology of the Dresden University of Technology
and provides generic functionality for parsing XML files into and internal object model, as
well as for implementing editor plug-ins dedicated to specific object model (XML) elements.
Thus, it can be easily extended by graphical editor modules (plug-ins) to visually author
content based on a given XML grammar. Previously, the framework was successfully utilized
for the development of courseware in the CHAMELEON project (see Section 3.2.5).

As shown in Figure 5.7, the user interface of the AMACONTBuilder consists of two main
parts: the application frame and the document frame. The application frame provides generic
functionality for configuration options and file management. It is responsible for parsing
XML-based documents to an internal object model, for assigning editor plug-ins to parts of
this object model, and for serializing the modified object model to XML, respectively. It
contains the document frame showing the currently opened (edited) document. This is again
divided into two parts: the navigation frame and the editor frame.

Figure 5.7: AMACONTBuilder overview [Fiala et al. 2005]

The navigation frame on the left provides a tree-based view on the node (component)
structure of the currently edited document. When navigating through this component hi-
erarchy, the specific editors assigned to the appropriate component types are automatically
activated in the editor frame (shown on the right). While in Figure 5.7 the navigation frame
shows the overall component hierarchy of the edited document, it is possible to use predefined
filters. For instance, an author aimed at the creation and configuration of image components

110 c© Copyright TU Dresden, Zoltán Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

has the possibility to display only the corresponding components and filter out all other ones.
Finally, the editor frame provides space for the actual editor plug-ins associated to dif-

ferent node (or component) types. It displays the editors associated to the currently edited
component (chosen in the navigation frame). A component type might be associated with
several editor modules. As an example, content unit components and document components
have both editors for manipulating the aggregation of their subcomponents as well as their
layout. In this case all corresponding editors associated with the actual author role are shown
as separate panes and can be activated by the author, respectively. The assignment of editors
modules to component types is determined by an XML-based configuration file that can be
individually set for different authoring scenarios.

While there are editor modules being applicable to all kinds of XML content (e.g. the XML
code editor shown in Figure 5.7), most modules are assigned only to specific node (component)
types and are thus activated at well-defined phases of a given authoring process. The following
sections give a short overview of the most important existing editor modules. According to
the main steps of the authoring process (and the running example) described in Section 5.1,
selected editors for content, navigation, and presentation authoring are presented.

5.2.2 Editors for Content Authoring

For the graphical creation of media components different visual editors (text editor, image
editor, CSS editor, etc.) have been created. By example of a picture representing a painting,
Figure 5.8 presents the image editor . It allows to upload images in different formats (e.g.
jpeg, gif, bmp, png), to edit their properties, and to save them as image components. While
most image metadata properties can be configured by appropriate input fields, some editing
operations can be also performed visually. As an example, the size of an image component
can be simply altered by mouse dragging.

To support for adaptation, the media editors (but also all other kinds of component editors)
were extended with a generic mechanism for creating content alternatives. For instance, in
the image editor it is possible to provide an alternative text for browsers that are not able to
present images. Furthermore, image variants with different quality alternatives can be added.
Such variants can be created in three ways: by uploading alternative images, by reconfiguring
(e.g. resizing) the current image and save it as a new variant, or by generating new images
automatically. In the latter case the author can predefine the properties (e.g. pixel size, color
depth, image format) of an arbitrary number of variants to be created. According to this
configuration, the alternative media instances are generated automatically. This feature was
implemented by using the Java API of ImageMagick [@ImageMagick].

After creating media component alternatives, component authors can define their adaptive
behavior by attaching adaptation conditions to each variant. As discussed in Section 4.3.1,
these conditions are Boolean expressions referencing parameters from the CC/PP-based con-
text model. For the configuration of adaptation conditions the profile browser was developed
(see Figure 5.9). It allows authors to visually navigate through the hierarchy of profiles,
to choose the appropriate parameters, and to insert them into adaptation conditions. The
profile browser can be configured by an RDFS document defining the current application’s
context model. The example in Figure 5.9 declares to use the current picture for browsers
with less then 8 bits per pixel color depth and less than 400 pixel horizontal resolution. As
can be seen, authors can “click together” complex logical expressions by visually choosing the
appropriate parameters from the pop-up window presenting the context model’s hierarchical
structure.

c© Copyright TU Dresden, Zoltán Fiala 111

Chapter 5. The Authoring Process and its Tool Support

Figure 5.8: Image editor

Figure 5.9: Defining adaptation conditions with the profile browser

The mechanisms described above aim at authoring adaptable content (media component)
instances. Still, in order to support for data-intensive Web applications, the editor tools can
be switched from this “instance mode” to the so-called “template mode”, i.e. authors can

112 c© Copyright TU Dresden, Zoltán Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

assign a data source query to the currently edited component [Tietz 2006]. The result is a
component skeleton (component template) that can be filled with dynamically retrieved data
on-the-fly.

Figure 5.10: Template editor for image components

Figure 5.10 depicts this mechanism by example of the image editor. As can be seen, in
this particular case the author defined a simple query retrieving images (of paintings) as well
as their metadata from a relational data source. Note, however, that it is also possible to
access the results of a query which was defined on a higher level in the component hierarchy.
After defining a query, the author has the possibility to assign specific fields of its result
set to the attributes of the image component. The drop-down list shown in Figure 5.10
illustrates how he assigns the source field of the query’s result set to the source attribute of
the image component template. Consequently, such dynamic attributes will be filled with the
appropriate values on-the-fly. As a matter of course, it is allowed to define some attributes
as constants. Furthermore, it is also possible to define adaptation operations on template
level by creating a variant of the component template, assigning an alternative query field
(containing e.g. the PDA variants of images) to it and defining a corresponding selection
method. For more information on the AMACONTBuilder’s media editors the reader is
referred to [Fiala et al. 2005].

5.2.3 Editors for Hypertext Authoring

Whereas the editors for content authoring facilitate the creation of media components (or
templates) and their adaptation variants, the editor modules for hypertext authoring focus on
structuring and interlinking components to complex hypermedia structures. They are further
divided into two groups: 1) editors for composing component hierarchies and 2) editors for

c© Copyright TU Dresden, Zoltán Fiala 113

Chapter 5. The Authoring Process and its Tool Support

defining hyperlink structures between those hierarchies.

5.2.3.1 Editors for Creating Component Hierarchies

The visual creation of component hierarchies is facilitated by two modules, the structure
editor and the subcomponent editor [Niederhausen 2006]. While the former one aims at
specifying the overall composition structure of a component-based Web document, the latter
one allows to manipulate the immediate subcomponents (i.e. child components) of a composite
component in more detail.

The main application scenario of the structure editor (see Figure 5.11) is the creation
of a component-based Web document “from scratch”. Starting from an empty document
component, authors can easily specify its internal structure by defining its subcomponents
(and the subcomponents of those subcomponents) in a visual way. The available compo-
nent types to be included (created) are visualized on the bottom part of the editor and can
be placed into a container component (or moved from one container to another) by using
“Drag&Drop” mechanisms. During this composition process, the integrity constraints dic-
tated by the component-based document format are strictly taken into account. For instance,
a media component has to be always contained by a content unit component.

Figure 5.11: Structure editor

As a matter of course, the structure editor is also ideal for visualizing (or manipulating)
the composition hierarchy of an already existing component hierarchy. Furthermore, it allows
authors to directly access any component contained in a component-based Web document.
By double-clicking on an arbitrary component the appropriate editors assigned to it are
automatically activated. As an example, the activation of an image component invokes the
image editor (shown in Figure 5.8) in a modal editor window. Moreover, the structure

114 c© Copyright TU Dresden, Zoltán Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

editor is not only associated with top-level document components, but also with all kinds
of composite components. In the latter case it only visualizes the subcomponent tree of
the currently selected composite component, thus providing partial views on (fragments of)
complex component hierarchies.

Whereas the structure editor is ideal for creating and visualizing component hierarchies of
arbitrary depth, there are also cases when component authors would like to deal only with the
immediate subcomponents of a composite component. A typical use case is the population of a
component structure with concrete media components or the definition of adaptation variants:
the subcomponent structure of a component might vary according to a given user model or
context model parameter. For this reason the subcomponent editor shown in Figure 5.12 has
been developed. It is associated with composite components (both document components and
content unit components) and visualizes their immediate subcomponents as an unordered list.

Figure 5.12: The subcomponent editor

According to the running example described in this chapter, the composite component
shown in Figure 5.12 contains information on a painting. In this case it is put together
from several subcomponents: the painting’s name, textual description, creation year, and a
greeting text addressing the user. As a matter of course, the subcomponent editor can be
also switched to template mode. Taking the example, one could connect it to a database
query in order to present dynamic information on paintings selected at run-time. What is
more, a composite component may aggregate both static and dynamic (i.e. template-based)
subcomponents. For instance, while the media items describing the actual painting could be
dynamically retrieved, the greeting text addressing the user is constant for all paintings and
is therefore a static component instance. Finally, similar to media editors, the subcomponent
editor also facilitates the creation of alternative component structures and selection methods.

c© Copyright TU Dresden, Zoltán Fiala 115

Chapter 5. The Authoring Process and its Tool Support

As an example, the author might provide additional information on paintings for expert users,
or insert some multimedia material for devices capable of presenting it.

5.2.3.2 Editors for Creating Hyperlink Structures

The AMACONTBuilder provides two editor modules for graphically authoring hyperlinks and
hyperlink structures [Niederhausen 2006]. While the graph editor facilitates the visualization
of a component-based Web presentation’s overall hypermedia structure, the hyperlink editor
supports the creation of single hyperlinks or hyperlink lists.

The graph editor shown in Figure 5.13 presents the hypermedia structure of a compo-
nent-based Web presentation in a graph-like way7. The nodes of the graph correspond to
top-level document components. A directed edge between two such nodes means that there
is at least one hyperlink component connecting them. Still, for better readability, “parallel
hyperlinks” between two documents are merged to one edge, i.e. only the connectivity of the
corresponding nodes is represented. Furthermore, author can use “filter functions” to display
only hyperlinks of a given type (e.g. typed links, template-based links or adaptive links).
While mainly serving for visualization purposes, the graph editor is an ideal starting point
for further authoring operations. When clicking on a node, the AMACONTBuilder opens
the appropriate document that can be then edited in more detail.

Figure 5.13: The graph editor

In order to create and manipulate single hyperlinks or hyperlink lists the so-called hyperlink
editor was developed. However, instead of being a stand-alone module for authoring abstract

7In order to present the graph editor based on a larger example, Figure 5.13 illustrates the navigation
structure of a component-based video rental shop.

116 c© Copyright TU Dresden, Zoltán Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

hyperlink components independent of the underlying content, it is used in combination with
the editor modules aimed at the creation of components that serve as the starting anchor of a
hyperlink component. As an example, the author of a text component can mark an arbitrary
text fragment and define a hyperlink starting from that component. Furthermore, it is also
possible to visually create complex navigation bars (i.e. composite components consisting of
a number of anchors and corresponding links) in form of specific document components. As
a matter of course, the resulting structures are stored as separate content components (e.g.
media component) and hyperlink components. However, this integrated view supports for a
more intuitive way of working for component authors.

Similarly to other editor modules, the hyperlink editor can be also switched to the tem-
plate mode. Again, different parameters of a hyperlink (such as its target, anchor text, or
even the request parameters attached to it) can be customized by appropriate data queries.
Furthermore, it is also possible to specify the adaptive behavior of a hyperlink component.
Four basic adaptation techniques are supported: link hiding, link removal, link disabling, and
link annotation. The usage of a given adaptation technique can be bound to a condition that
references the context model. Again, such conditions can be visually defined by using the
profile browser (see Figure 5.9).

5.2.4 Editors for Presentation Authoring

Finally, a number of editor modules for configuring the presentation layout of component-
based Web documents have been developed. As discussed in Section 5.1 they serve two
purposes: the definition of a component’s abstract layout, and the configuration of its styling
by using CSS. These tasks are facilitated by the layout editor and the CSS editor, respectively.

Figure 5.14 shows a screenshot of the layout editor. It facilitates the assignment of lay-
out managers to components and to configure their various attributes in an intuitive visual
way. Layout managers are visualized by means of a grid that can be filled by icons repre-
senting subcomponents. Various mouse dragging and “Drag&Drop” techniques have been
realized in order to perform most operations graphically, such as resizing the grid, placing
subcomponents into grid cells, changing their alignment, etc. Besides, various input fields
for fine-tuning all possible layout attributes (both layout attributes and subcomponent at-
tributes) can be found on the right editor pane. Furthermore, a preview function for testing
the current layout in XHTML has been developed, too.

Figure 5.14 depicts a possible abstract layout for the component presenting paintings
(see Section 5.2.3). Based on vertical BoxLayout, the content pieces describing a painting
are arranged in a linear structure. Note that even though the figure depicts a concrete
“painting instance”, this editor can be switched to template mode, as well. However, as far
as iterative templates (i.e. templates with an unpredictable number of subcomponents) are
concerned, only the layout managers GridTableLayout (with only one predefined dimension)
or BoxLayout (with an undefined number of subcomponents) can be utilized. Furthermore,
layout adaptations can be easily specified by the creation of appropriate layout alternatives
and the definition corresponding selection methods.

On the other hand the CSS editor aims at defining the design of the resulting application.
It is a simple (media component) editor module allowing for loading CSS files as well as for
manipulating their style definition entries. It allows authors to select different elements of
the respective output format and configure their layout attributes (e.g. font sizes, colors, text
decorations, etc.). The resulting definitions are stored as CSS media components. Of course,
similar to the other editors, component authors can again define alternative CSS variants

c© Copyright TU Dresden, Zoltán Fiala 117

Chapter 5. The Authoring Process and its Tool Support

Figure 5.14: Layout editor

and assign them to a specific context model parameter.

5.2.5 The XML editor

The main goal of the AMACONTBuilder is to provide a set of visual editor modules that
allow component authors to abstract from the the component-based document format’s un-
derlying XML grammar. Still, in order to exploit the full range of language features (e.g.
the ones for which there are no graphical authoring plugins available, yet) or to debug the
XML code generated by other visual editor modules, it is also required to provide “low-level”
source code editing support. For this purpose, the built-in XML editor provided by the
AMACONTBuilder’s underlying plug-in architecture can be utilized8. Inspired by the func-
tionality offered by professional XML tools (e.g. XMLSpy [@XMLSpy]), it provides a number
of useful features, such as:

• syntax highlighting with adjustable font types and sizes, as well as configurable color
schemes for different parts of XML documents, like tag names, attribute names (and
values), comments, DOCType declarations, etc.

• partial views on complex XML documents by displaying only the XML subtree that
belongs to the node (component) being currently selected in the navigation frame

• automatic indentation of XML tags to an easily readable “pretty-print” layout
8Note that the XML editor was already presented in Figure 5.7.

118 c© Copyright TU Dresden, Zoltán Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

• well-formedness checking as well as validation of XML documents based on asso-
ciated XML schemas with appropriate textual feedback on found errors

• schema-based code completion for XML (sub)elements and attributes based on
well-formedness rules as well as default values provided by a corresponding XML schema

While being primarily used to edit XML documents based on the component-based docu-
ment format, the XML editor is a generic tool that is applicable for arbitrary XML grammars.

5.2.6 Implementation Issues

The AMACONTBuilder was implemented in Java and is a modular authoring tool allowing
for creating and editing arbitrary XML documents. As mentioned above, it is based on a
generic framework [Chevchenko 2003] that can be extended by graphical editor plug-ins for
visually authoring specific types of XML content. In order to provide programmatic access
to all kinds of XML data, the AMACONTBuilder utilizes a flexible internal object model
which is based on JDOM [@jdom]. This generic object model was extended by specific
classes that provide an API for efficiently manipulating adaptive Web components. That is
to say, component-based adaptive Web documents are automatically parsed into a hierarchy
of component specific objects when they are opened by the AMACONTBuilder.

The UML diagram shown in Figure 5.15 depicts the most important classes of the object
model hierarchy that are specific to the component-based document format. The root of
this object hierarchy is the class AmacontNode providing a number of generic methods for
component manipulation. The specific classes representing concrete component types inherit
from it and declare their (additional) specific attributes and methods, respectively. As an
example, the developer of an editor plug-in dealing with image components can utilize pre-
defined methods of the class AmaImageComponent for getting and setting image metadata,
for creating image component variants and selection methods, etc.

Note that the utilization of such an object model has different advantages. First, plug-in
programmers can use a high-level API for manipulating adaptive Web components and do not
have to bother about their concrete underlying XML-based format. Second, this solution pro-
vides also more robustness regarding to modifications of the utilized XML languages. During
the “evolution” of this dissertation different changes to the component model’s XML-based
description language were made, especially in order to provide less redundant descriptions
and better performance in the document generation process. Still, as the plug-ins of the
AMACONTBuilder work on an internal object model, it was sufficient to adjust the map-
pings between that model and the XML-based formats, not needing to modify the application
logic of specific plug-ins.

The editor modules (plug-ins) of the AMACONTBuilder have to implement a correspond-
ing interface class9. It specifies a number of generic methods, e.g. for accessing the underlying
object model, to set up the editor’s graphical user interface, to check if the editor performed
modifications on the object model, to write back these modifications to the object model,
etc. Furthermore, whenever an editor should be extended with the capability to create and
manage adaptation variants of the edited component type, it can inherit from a specific
predefined class10 that already implements this functionality in a generic way.

The assignment of editor modules to a specific component type is managed by an XML-
based configuration file called amaplugins.xml. Listing 5.1 depicts a “fragment” of this

9de.tudresden.inf.amacont.plugins.EditorPlugin [Müller et al. 2005]
10de.tudresden.inf.amacont.plugins.AbstractAdaptableEditor [Niederhausen 2005a]

c© Copyright TU Dresden, Zoltán Fiala 119

Chapter 5. The Authoring Process and its Tool Support

Figure 5.15: AMACONTBuilder object model

file aimed at associating the Java class implementing the image editor with all objects of
the type AmaImageComponent (from the AMACONTBuilder’s object model). The config-
uration specifies the plug-in’s name, its version number, author, a short textual description,
the class that implements it, and the elements from the object model to which it is as-
signed. While in this case the image editor is associated only with the elements of the type
aco:AmaImageComponent, note that one can also associate an editor plug-in (e.g. the XML
editor or the structure editor) with a number of classes of the object model.

1 <Plugin type="editor">
2 <Name>amacont.imagecomponent.editor</Name>
3 <Version>1.0</Version>
4 <Author>Matthias Niederhausen</Author>
5 <Description>Image Editor</Description>
6 <Class>de.tudresden.inf.amacont.plugins.ImageEditor</Class>
7 <Element name="aco:AmaImageComponent" />
8 </Plugin>

Listing 5.1: Assignment of an editor module to a component type

For further detailed information about the AMACONTBuilder’s architecture, internal
object model, configuration, and the implementation of its various editor modules the reader
is referred to [Fiala et al. 2005, Chevchenko 2003, Niederhausen 2005b, Niederhausen 2006,
Tietz 2006].

120 c© Copyright TU Dresden, Zoltán Fiala

5.3. From Component Authoring Towards Model-Driven WIS Generation

5.3 From Component Authoring Towards Automatic Model-
Driven WIS Generation

The first part of this chapter introduced the structured Hera-AMACONT methodology for
the development of component-based adaptive Web applications. According to the design
steps identified by Hera, it was shown how those concepts can be applied to systematically
implement adaptive Web applications by creating, configuring, and aggregating components
(or component templates). During the phases of design and implementation, a main focus
was put on the consideration of different adaptation issues (concerns). Thus, a possible
model-based authoring process for component developers was provided.

Basically, there are two possibilities to put such an identified process model into practice.
In the first case component authors can use the existing (and already introduced) modules
of the AMACONTBuilder. Considering the different designs and keeping in mind the iden-
tified authoring steps, they can then build complex adaptive Web applications by creating,
configuring, and composing reusable components (or component templates). The advantage
of this “manual mapping” approach is the utilization of a graphical authoring tool that al-
lows for visually editing component properties in detail. Furthermore, in a similar way, it
is possible to proceed according to the steps identified by another design or process model.
However, such a manual mapping also means that the applied design model serves mainly
as a “guideline” (or documentation) for component authors, i.e. its semantics is not explicily
exploited when creating component-based adaptive Web applications.

The second possibility is take a further step from model-based to model-driven component
engineering and add automation to the overall process of design and implementation. The
reason for this is the fact that, besides graphical representations (in form of diagrams), high-
level design models can be also expressed in a formal way. As an example, we again consider
Hera that provides RDF(S)-based specifications of its different design issues. By explicitly
describing model semantics, such specifications can be used for the automatic model-driven
generation of a corresponding implementation. This approach is also pursued by the Hera Pre-
sentation Generator (HPG [Frasincar et al. 2005]), a tool aimed at creating and implementing
Hera models. However, prior to the work described in this dissertation, Hera’s presentation
model was not formalized, nor was adaptation at the presentation level addressed and imple-
mented in the Hera tools. Moreover, HPG uses conventional Web document formats (such
as HTML) as its implementation model, not allowing to reuse the generated implementation
artefacts in a component-based manner. Thus, this section aims at the automatic, model-
driven generation of component-based adaptive Web presentations from high-level design
model specifications. This will allow to combine the modeling power of the (extended) Hera
design method with the flexible reuse, presentation, and adaptation capabilities provided by
the component-oriented document format and its publication architecture.

To achieve this goal, two requirements have to be fulfilled. First, all design models describ-
ing an adaptive Web application have to be expressed in a formal way. Second, a series of
model-driven transformation steps is needed to automatically map these model descriptions
to a component-based implementation. To meet these requirements, this section provides a
facility for the (currently missing) RDF(S)-based formalization of a Web application’s presen-
tational aspects (as well their as corresponding adaptation issues) at model level. Bridging
the gap between the application model and the actual implementation, this formalization will
be utilized to automatically generate an adaptive component-based presentation.

The rest of this section is structured as follows. In Section 5.3.1 the concept of ab-
stract layout managers (from the component-based document format) is adopted to the

c© Copyright TU Dresden, Zoltán Fiala 121

Chapter 5. The Authoring Process and its Tool Support

Hera-AMACONT presentation model, and its RDFS-based description is provided. Accord-
ing to this formalization, Section 5.3.2 describes how high-level model specifications can be
automatically transformed to an implementation utilizing the component-based document
format and its document generation architecture. The XML-based transformation steps are
explained in detail, and the resulting methodology is exemplified by a prototype application.
Furthermore, selected aspects of dynamic adaptation provided by the overall presentation
generation process are also discussed.

5.3.1 RDFS-based Specification of the Hera-AMACONT PM

In order to formalize the Hera-AMACONT presentation model, an RDFS-based specification
of the PM schema was developed [Fiala et al. 2004a]. The basic idea behind it was to transfer
(i.e. adopt) the concept of abstract layout managers from the component-based document
format to the model level. The layout manager concept was already introduced in detail in
Section 4.3.2. As mentioned there, layout managers aim at describing the spatial arrange-
ment of components in a client-independent way, thus allowing to abstract from the exact
presentation capabilities (e.g. window size) of a concrete browser display.

Note that in Section 5.1.4 significant analogies between document components and Hera
slices were mentioned. Furthermore, a “recipe” for the mapping of slices to components
was also introduced. Taking advantage of these analogies (and the fact that both slices and
components rest upon XML technologies), it is thus straightforward to transfer the concept
of layout managers to the model level. That is to say, the basic idea is the assignment
of abstract layout descriptors to Hera slices in order to specify the arrangement of their
subslices in an implementation-independent way. As a consequence, the RDFS-based PM
formalization supports two mechanisms: 1) the definition of model-level layout managers
and 2) their assignment to AM slices. A slice with an associated layout manager constitutes
a so-called region: an abstraction for a rectangular part of the display area where the content
of that slice will be displayed. These mechanisms will now be explained based on the running
example used throughout this chapter.

Figure 5.16 depicts a schematic graphical presentation diagram (PD) of the running ex-
ample’s starting page (presenting painting techniques). Note that it is based on the corre-
sponding application diagram (see Figure 5.3) which is extended by additional presentation
specific information, i.e. the presentation diagram acts as an overlay of that application di-
agram aimed at specifying its layout11. As an example, the dark rectangle “behind” the
top-level slice depicts the top-level region representing its contents. It utilizes the layout
manager instance BoxLayout1 for the spatial arrangement of the corresponding subslices
(i.e. of the regions assigned to them). The simple RDF code snippet for specifying this layout
assignment is shown in Listing 5.2.

1 <Slice rdf:about="#Slice.technique.main">
2 <layout rdf:resource="#BoxLayout1"/>
3 </Slice>

Listing 5.2: Layout assignment to a slice

The specific attributes of this layout (BoxLayout1) are also schematically shown in the
diagram by means of arrows that are labeled with their names and corresponding values. Both

11Similar to the AM aimed at grouping the concepts of the CM to slices, the PM leans itself on the AM
by further defining the spatial arrangement of those slices.

122 c© Copyright TU Dresden, Zoltán Fiala

5.3. From Component Authoring Towards Model-Driven WIS Generation

main

technique

description

tname

painting

condition

BoxLayout1

width

axis

halign

halign

halign

cols

width axis

halign

width

halign

BoxLayout2

condition

left

Set

GridLayout1

center
halign

cent er

pres:client=PC

100%

y

y

100%

pres:client=PDA

left

left

center

100%

3

picture

Figure 5.16: A Hera-AMACONT PM example [Fiala et al. 2004a]

attributes describing the overall layout and attributes specifying the arrangement of each
referenced subslice (subregion) can be defined. Since these attributes were taken from the
component-based document format, the reader is referred to Section 4.3.2 for more detailed
information.

In this particular case the subslices (subregions) of the top-level slice (top-level region)
are arranged in a vertical way. Concretely, these are the three subregions associated with the
subslices tname, description as well as the link list pointing to the paintings representing
the actual painting technique. The RDF-based representation of this layout definition is
shown in Listing 5.3.

As already mentioned, layout descriptions of a given region describe only the spatial
arrangement of its immediate subregions. Whenever these subregions also contain nested
subregions, their appropriate layouts have to be additionally specified. In Figure 5.16 this
is the case for the link list (set-element) pointing to the associated painting slices. The
corresponding layout assignment is specified by the RDF code shown in Listing 5.4.

Note the attribute pres:condition that allows to declare simple adaptation condi-
tions that reference parameters from the usage context. Whereas for example the paintings
exemplifying the presented painting technique are arranged on a desktop in a tabular way
(GridTableLayout1), the small screen size of PDAs requires to adjust them below each other
(BoxLayout2). In Figure 5.16 these conditional layout assignments are visualized by the two
overlapping regions as well as the two dashed arrows pointing to the rectangles containing
their conditions.

c© Copyright TU Dresden, Zoltán Fiala 123

Chapter 5. The Authoring Process and its Tool Support

1 <BoxLayout rdf:ID="BoxLayout1">
2 <axis>y</axis>
3 <width>100%</width>
4 <subregion-ref>
5 <subregion pres:align="left">
6 <slice-ref rdf:resource="#Slice.technique.tname"/>
7 </subregion>
8 </subregion-ref>
9 <subregion-ref>

10 <subregion pres:align="left">
11 <slice-ref rdf:resource="#Slice.technique.description"/>
12 </subregion>
13 </subregion-ref>
14 <subregion-ref>
15 <subregion pres:align="center" pres:valign="top">
16 <set-element-ref rdf:resource="#SetOfLinks_1"/>
17 </subregion>
18 </subregion-ref>
19 </BoxLayout>

Listing 5.3: High-level BoxLayout definition example

1 <Set-element rdf:about="#SetOfLinks_1">
2 <layout rdf:resource="#GridTableLayout1"
3 pres:condition="pres:client=’Desktop’"/>
4 <layout rdf:resource="#BoxLayout2"
5 pres:condition="pres:client=’PDA’"/>
6 </Set-element>

Listing 5.4: Layout assignment to Set elements

Finally, Listing 5.5 presents the RDF code specifying the GridTableLayout1 layout
manager. According to this, the painting pictures (acting as the link anchors to the painting
slices) are arranged in a tabular way.

1 <GridTableLayout rdf:ID="GridTableLayout1">
2 <rows>2</rows>
3 <width>100%</width>
4 <height>80%</height>
5 <space>10</space>
6 <border>0</border>
7 <header_align>xAxis</header_align>
8 <subregion-ref>
9 <subregion pres:align="center" pres:valign="center" ... >

10 <slice-ref rdf:resource="#Slice.painting.picture"/>
11 </subregion>
12 </subregion-ref>
13 </GridTableLayout>

Listing 5.5: High-level GridTableLayout definition example

Note that in contrast to static components defined at instance level, Hera-AMACONT
layout assignments have to be specified at schema level. Due to the dynamic nature of WIS
applications, this means that the number of items in an access element (e.g. the number of

124 c© Copyright TU Dresden, Zoltán Fiala

5.3. From Component Authoring Towards Model-Driven WIS Generation

paintings exemplifying a given painting technique) is not known at design time. In such cases
one should use either a BoxLayout with an undefined number of cells or (as shown in our
particular example in Listing 5.5) a GridTableLayout so that only one of its dimensions
(columns or rows) is predeclared. The missing dimensions (in this particular example the
number of columns in the resulting table) are automatically computed at run time (see later
in Section 5.3.2.2).

5.3.2 Automatic Generation of a Component-based Implementation

After the RDF(S)-based specification of the Hera-AMACONT PM, all design models can be
expressed in form of RDF(S)-based specifications. Given these specifications, it is now shown
how they can be utilized to automatically generate a component-based adaptive Web applica-
tion that can then be published (and adapted) for different device, user, and context profiles.
Furthermore, a prototypical implementation of this automatic hypermedia generation process
is presented.

First, the general transformation architecture is described in overview. Then, the auto-
matic model-driven generation of adaptive document component structures as well as their
dynamic publishing process based on the actual usage context are explained. Finally, se-
lected issues of dynamic adaptation (adaptivity) provided by the resulting component-based
implementation are illustrated.

Model-driven Hypermedia Presentation Generation

Transform TransformTransform

Data

AM PM

configures

Model-based WIS specification

CM

Figure 5.17: Model-driven WIS generation process overview

Figure 5.17 gives a general overview of the targeted model-driven Web presentation gen-
eration process. As depicted there, this general architecture consists of a series of transfor-
mations that convert some input data to a hypermedia (Web) application. The input data
represents structured information that corresponds to the application domain (here defined
by the CM). The transformations are configured by a number of models that dictate the ap-
plication’s navigational and presentational behavior. In the case of Hera-AMACONT, these
are the AM and the PM, each being “enriched” with corresponding adaptation definitions12.
We note, however, that this general architecture is also characteristic for other model-driven
approaches.

Figure 5.18 depicts the concrete envisioned data transformation process in more detail. Its

12Note that the Hera project provides graphical tool support for creating conceptual and application mod-
els [Frasincar 2005].

c© Copyright TU Dresden, Zoltán Fiala 125

Chapter 5. The Authoring Process and its Tool Support

input is a conceptual model instance (CMI), an RDF document (or repository) that contains
all the data (among others references to the the media objects) underlying the conceptual
model (CM) of a Web application. Thus, as already described in Section 5.1.2, the specifi-
cation of a Web application’s conceptual model has to be accompanied by the creation or
retrieval of media instances that represent the identified concept attributes, i.e. constitute the
application’s underlying data. To cope with the specifics of the component-based document
model, it is assumed that those media instances are annotated with appropriate metadata.

Document Generation

Input Doc.

contains all

variants and

adaptation

options

Rendering

XHTML

cHTML

WML

Transform

Adaptation

to context

data

Context Model

Context Modeling

u
p

d
a

te

request

data

(CMI)

Component Creation

and Configuration

AM PM

request

development time run-time / publication time

CM

Figure 5.18: Component configuration and publication

In order to deliver Web users an adaptive hypermedia presentation on top of this data, two
tasks have to be performed. First, a component-based Web presentation has to be created (see
the left part of Figure 5.18). During this phase of “component creation and configuration”,
the appropriate models (i.e. the AM and the PM) describing the application have to be taken
into account. Second, according to the actual user’s request and current usage context, the
created component structures have to be sent to the document generation pipeline (see the
right part of Figure 5.18). While the first task is performed only once (i.e. once for each
application), the second one is executed for each user request. However, both tasks can be
performed automatically, i.e. no additional participation of the Web designer/developer is
needed. The following sections describe the corresponding transformation steps in detail.

5.3.2.1 Model-driven Component Creation and Configuration

As described above, the first part of the overall transformation process aims at the model-
driven generation of a component-based adaptive Web application. It was designed and
prototypically implemented in a static and a dynamic variant, indicating whether the gener-
ated adaptive component structure consists of component instances or component templates.
The first variant creates a static component-based adaptive hypermedia presentation, i.e. a
network of adaptive document component instances for all the underlying data (e.g. in our
running example for all instances of painting techniques, paintings, or painters) at once. Still,
the term “static” refers only to the data offered by the resulting hypermedia presentation, it

126 c© Copyright TU Dresden, Zoltán Fiala

5.3. From Component Authoring Towards Model-Driven WIS Generation

can be still dynamically adjusted to different usage contexts at the later document generation
process (see Section 5.3.2.2). While providing better performance for document generation,
the shortcoming of this variant is that the underlying data can not be altered at run-time.
On the other hand, the dynamic variant creates a structure of adaptive document component
templates (each corresponding to a top-level slice) that are subsequently dynamically filled
with volatile data at each request only during document generation. Since (apart from small
deviations) the two transformation variants are quite similar, we describe here the static one.

This “component creation and configuration” process is parameterized by the application
model (AM) and the presentation model (PM) and consists thus of two phases. The first phase
takes the AM into account to convert the original data (CMI) to a component-based Web
document structure (still without layout descriptors). This phase consists of two substeps.

In the first substep, a so called application model instance (AMI) is generated. It is an
RDF document, an instantiation of the application model (AM) with the data available from
the original conceptual model instance (CMI). For this transformation substep existing mod-
ules from the Hera Presentation Generator (HPG [Frasincar et al. 2005]) provided by the
Hera project have been also utilized. However, in this particular scenario, the delivered ap-
plication model instance is still unadapted, i.e. it contains appearance conditions referencing
(both static and dynamic) parameters from the context model. As described later, this en-
ables to use the various (dynamic) adaptation mechanisms provided by the component-based
document format and its document generation architecture.

In the second substep, the incoming application model instance is automatically con-
verted to a document component structure. Based on the mapping “recipe” described in
Section 5.1.4, the corresponding XSLT transformation stylesheets take the analogies between
slices and adaptive document components automatically into account. Whenever the AM
specified appearance conditions, the resulting component structure also contains adaptation
variants and selection methods (referencing the context model). Still, as the presentation
model has not been considered at this stage, it does not contain layout specific attributes,
yet.

In the next phase of the “component creation and configuration process”, the layout
attributes of the created component structure are configured according to the actual appli-
cation’s presentation model (PM) description. Beginning at top-level document components
and visiting their subcomponents recursively, the appropriate layout descriptors are added
to the meta-information section of each component’s header. Since the layout manager at-
tributes of the Hera-AMACONT PM rest upon the layout concepts of the component-based
document format, this mapping is a straightforward process [Fiala et al. 2004a]. Yet, for set
elements (containing a variable number of subelements depending on the actual size of the
CMI) the concrete dimensions of BoxLayout or GridTableLayout layout managers have
to be computed at run time.

Whenever the PM contains adaptation conditions, these are translated to component lay-
out variants and corresponding selection methods. Thus, for each layout assignment condition
defined in the PM a separate layout manager variant is created. Furthermore, a selection
method according to the switch-case or the if-then-else mechanism is composed (according
to Section 4.3.1). Again, all transformations are implemented as XSLT stylesheets.

Note that the output of this component creation and configuration process is a document
component structure (or network) containing both adaptation variants as well as as adaptive
layout descriptors.

c© Copyright TU Dresden, Zoltán Fiala 127

Chapter 5. The Authoring Process and its Tool Support

5.3.2.2 Document Generation

As shown in the right part of Figure 5.18, the generated component structures manifest a
component-based implementation of the designed hypermedia application and serve as the
input data for the document generation pipeline. As described in detail in Section 4.5,
they are subdued to a series of data transformations that are triggered by the user’s actual
request, parameterized by the current context model, and result in an adapted hypermedia
presentation. Based on these transformations, Figure 5.19 shows two versions of the generated
hypermedia presentation, one for desktop browsers and another one for PDAs. Note that
(as specified above) the limited display size of the handheld does not allow for a tabular
arrangement of painting pictures, i.e. they are displayed in a linear way.

Figure 5.19: Generated hypermedia presentation [Fiala et al. 2004a]

5.3.3 Adaptivity Support

The document generation process described in Section 5.3.2.2 provides for static adaptation
(or adaptability) by taking the user’s actual usage context into account. However, it also sup-
ports selected issues of dynamic adaptation (adaptivity), i.e. the kind of adaptation included
in the generated adaptive hypermedia presentation.

As defined in Section 2.2.1, adaptivity is the capability of a hypermedia presentation
to dynamically reconfigure itself according to a dynamic usage context that is continually
changing during the user’s browsing session. These changes can originate from different
“events”, such as user interactions or even changes to the user’s environment. To implement
adaptivity, such events have to be acquired, the usage context has to be updated, and the
Web presentation has to be regenerated, respectively.

Based on our running example application, Table 5.2 summarizes a number of charac-
teristic examples for adaptability and adaptivity to be considered in the different models
specifying a Web application. To be more accurate, it presents factors (context parameters)

128 c© Copyright TU Dresden, Zoltán Fiala

5.3. From Component Authoring Towards Model-Driven WIS Generation

that can be the basis for adaptation. While the parameters in the left column (describing
the state of the user, his device, and environment) are constant for a single user session, the
parameters in the right column can change (within the session) according to the user’s inter-
action behavior. For instance, whereas the color depth of the user’s device or its capability
to present images influence the data to be presented statically, the available bandwidth can
fluctuate and lead to a dynamic adaptation of media instances. Similarly, while the user’s
expertise level might be considered as constant, his knowledge on specific painters might
change dynamically when browsing through the presentation described throughout this ses-
sion. Finally, while the user’s preferences for design elements like font types, sizes, or colors
can be viewed as static factors, the current screen size can be influenced dynamically during
a user session.

Adaptability Adaptivity

CM/MM device type (Device) dynamically changing bandwidth
media types supported by (Bandwidth)
end device
(ImageCapable)

AM user’s expertise user’s changing knowledge
(ExpertiseLevel) on painters (Biography)

PM user’s layout preferences resizing the browser’s window
(PreferredCSS) (InnerSizeX)

Table 5.2: Adaptability/adaptivity examples across the design and implementation phases

As described in Section 4.5.3, the document generation architecture of the component-
based document format utilizes an extensible context modeling framework. Providing dif-
ferent kinds of context modeling components (e.g. for device modeling, location model-
ing, or for user modeling), it allows to automatically update selected parts of the context
model [Hinz and Fiala 2005]. As the focus of this chapter was put on the RDF-based speci-
fication of the Hera-AMACONT presentation model, it is now explained how dynamic adap-
tation specified in the PM can be realized.

When the user resizes his browser window, a JavaScript function aiming at determining
the new dimensions and sending them to the server is executed. It is part of a set of client-
side scripts for acquiring device capabilities and interactions which is automatically included
in the presentation during document generation. Via the next HTTP request (initiated by
the user’s navigation) this data is sent to the server where the device model is appropriately
updated. For this purpose the corresponding device modeling component utilizes the profile-
diff mechanism of UAProf implemented by DELI [Butler 2003], an API provided by the
Apache Web server for maintaining and updating device and user profiles based on CC/PP.
For more information of this device modeling issue the reader is referred to [Hinz et al. 2006].

After updating the device model, the request is further processed and the hypermedia pre-
sentation is regenerated (see Figure 5.18). According to the steps described in Section 5.3.2.2,
a new component instance is taken and subdued to the document generation pipeline so that
a new presentation according to the updated context is generated. Figure 5.20 shows how the
generated XHTML presentation is dynamically updated when the user resizes his browser
window during browsing.

c© Copyright TU Dresden, Zoltán Fiala 129

Chapter 5. The Authoring Process and its Tool Support

Figure 5.20: Presentation layer adaptivity

5.4 Summary and Realized Applications

This chapter dealt with the engineering process of component-based Web applications. Dif-
ferent application scenarios were briefly discussed, but the main focus was put on the struc-
tured development of data-driven adaptive Web presentations. It was shown how during the
phases of design and implementation different aspects of adaptation can be dealt with. Fur-
thermore, tools and mechanisms for authoring or generating component-based adaptive Web
applications were explained and demonstrated. This section gives a summary of the proposed
multi-stage development process and gives an overview of already realized component-based
adaptive Web applications.

5.4.1 Summary of the Multi-stage Development and Document Genera-
tion Process

As a summary, Figure 5.21 recapitulates in a graphical way the different levels and possi-
ble activities involved in the development and publication process of component-based Web
applications. It distinguishes between three main “levels”: design and modeling, component-
based implementation, and document generation. The numbered arrows represent selected
Web engineering activities or processes. In the following they are discussed in more detail.

1. Component Authoring: The main focus of the activities described in this chapter
lies on the development of adaptive Web applications from reusable implementation
entities (document components) in a component-based way. Such a component-based
Web document is schematically depicted on the left side of the second (middle) box
in Figure 5.21. Though it could be created or edited by using a simple text or XML
editor, the complexity of the component-based document format’s underlying XML
grammar (see Chapter 4) calls for visual authoring support. For this purpose the

130 c© Copyright TU Dresden, Zoltán Fiala

5.4. Summary and Realized Applications

painted_by

exemplified_by created_by

painting

year

aname

artifact

description

cname

biography

painter

creator

picture

technique

tname
Set

subClassOf

Set

subPropertyOf subClassOf

Set

aname

year

main

hyperlink

technique

picture

description

main

tname

painter

painting

painting

exemplified_by

painted_by

cname

picture

Set

main

technique

description

tname

painting

condition

BoxLayout1

BoxLayout2

condition

Set

GridLayout1

prf:client=PC prf:client=PDA

picture

Design and Modeling

Component Authoring

PaintingComp DC

Painting

PaintingInfoComp DC

PaintingInfo

ImageAndTextComp CU

PaintingAttr

PainterComp DC

Painter

...

TextComp MC

year

TextComp MC

name

ImageComp MC

picture

 Model-driven

Component Generation

Component-based

Implementation

Pipeline-based Document Generation

Context Model

Context Modeling

Request

Transform
component
template
evaluation

Rendering
XHTML.full
XHTML.basic
XHTML.MP
WML

Session
Profile

Device
Profile

Update

Location
Modeling

Device
Modeling

Adaptation

Client Device

...

Profile

User
Modeling

Transform
adaptation
of
component
variants

Sensor Components

Inter-
action

Sensors

Location
Sensors

Device
Properties

Sensors

Device Properties / UAProf

User Position

User Interactions

Transform
resolve
comp.
references

Document

Generation

Components
Document

Component-based Web Document
AMACONTBuilder

Hera-AMACONT

 Model-based Development by a

 Hypermedia Design Method

P
u

b
li

ca
ti

o
n

 P
ro

ce
ss

D
e

si
g

n
 a

n
d

 D
e

v
e

lo
p

m
e

n
t

P
ro

ce
ss

1

4

23

Figure 5.21: Overview of the multi-stage development process

c© Copyright TU Dresden, Zoltán Fiala 131

Chapter 5. The Authoring Process and its Tool Support

authoring tool AMACONTBuilder (shown on the right side of the second box) was
introduced. It offers a number of graphical editor modules for the implementation
of adaptive Web applications by the visual creation, configuration, and interlinking
of document components. In Figure 5.21 this activity of “Component Authoring” is
depicted by the horizontal arrow in the second box (Nr. 1).

2. Model-based Development by a Hypermedia Design Method: As a format-
specific tool aimed at the component-based implementation of adaptive Web appli-
cations, the AMACONTBuilder is not bound to a given process model or authoring
workflow. Quite the opposite, it can be flexibly used in different development scenarios
based on the requirements of the targeted application area. While for smaller Web pre-
sentations an ad-hoc approach is obviously suitable, the development of more complex
adaptive Web applications necessitates to systematically take into account different
application (and adaptation) concerns. As argued earlier, in this latter case compo-
nent authors should proceed in a structured way, guided by an appropriate high-level
model-based design of the hypermedia application.

In Figure 5.21 this model-based component development process is depicted by the
dashed arrow (Nr. 2) pointing from the level of “Design and Modeling” to the AMA-
CONTBuilder. Considering the lines identified by a high-level model-based design
methodology (in this case Hera-AMACONT) as a guideline, component authors im-
plement adaptive Web applications by utilizing the appropriate modules of the AMA-
CONTBuilder in a systematic way. The advantage of this approach is the usage of a
graphical authoring tool that facilitates to manipulate component properties in detail.
Furthermore, in a similar way it is possible to proceed according to the steps identified
by another design method. Note that this approach is also typical for today’s software
engineering practice. Guided by a number of (mostly UML-based) models specifying
the targeted software application, software developers utilize visual development plat-
forms and selected implementation (programming) languages for the realization of the
required functionality.

3. Model-driven Component Generation: As discussed above, the AMACONTBuil-
der is a flexible authoring tool that facilitates to implement component-based Web
applications independent from a given design or process model. Still, the observation
can be made that by exploiting the explicit semantics described in a high-level design
model it might be also possible to add automation to the process of design and imple-
mentation. That is to say, the resulting development process is not only model-based
but also model-driven. This process of “Model-driven Component Generation” is de-
picted by the arrow Nr. 3 and was illustrated by example of the Hera-AMACONT
methodology in Section 5.3 of this chapter. Based on the RDF-based formalization of
the PM, it was shown how a component-based Web application can be automatically
generated based on a sequence of design models aimed at describing the Web applica-
tion’s semantic, navigation, and presentation behavior in a formal high-level way. The
resulting Web application still contains all adaptation variants and can be thus later
published for specific users, devices, and contexts.

The main benefit of this approach is the specification of a Web application on a high-
level of abstraction independent of its actual implementation. The required implemen-
tation-specific knowledge is integrated into the “model-to-component transformation
process”, i.e. the automatic mapping guarantees that the semantics of the design mod-
els is appropriately incorporated in the generated component-based implementation.

132 c© Copyright TU Dresden, Zoltán Fiala

5.4. Summary and Realized Applications

Moreover, the usage of Semantic Web technologies in the models also provides a number
of facilities (to be investigated in the future), such as efficient model reuse, interoper-
ability, model checking, and validation, etc.

On the other hand, the specification of an adaptive Web application in form of high-
level design models does not allow to describe its implementation and presentation
aspects as detailed as a “lower-level” implementation-oriented authoring tool. Thus,
as also depicted in Figure 5.21, a combined approach is also possible: the model-
driven generation of a component-based Web document (arrow Nr. 3) and its further
“refinement” with an implementation-centric authoring tool (arrow Nr. 1).

4. Document Generation: While the activities mentioned above aimed at the creation
or model-driven generation of component-based Web documents, the arrow Nr. 4 depicts
the process of their publication to a specific Web output format. For this purpose
the document generation architecture presented in Section 4.5 is utilized, that acts
as a “player” of the component-based document format. The documents created (or
generated) on the higher levels serve as the input of this architecture. It automatically
generates a Web presentation from this input, based on available information on the
current user as well as his entire usage context. The resulting presentations are delivered
to the user’s browser in an appropriate Web output format, such XHTML, cHTML, or
WML.

Note that this document generation process can be also considered as a specific kind
of model-driven transformation. Starting from a platform-independent (and context-
independent) description of a Web application based on the proposed concern-oriented
component model, it generates a Web page in a platform-specific (i.e. device-specific)
Web implementation format. Thus, the overall authoring and publication framework
depicted in Figure 5.21 can be viewed as a multi-stage model-driven transformation
process between the three abstraction levels of design and modeling, component-based
implementation, and format-specific Web presentations. Yet, while the transformation
process between the Hera-AMACONT models and their component-based implementa-
tion (arrow Nr. 3) is performed only once for each application, the transformation from
this component-based implementation to a specific Web output format is executed for
each user request.

5.4.2 Realized Applications

This chapter exemplified the design and implementation process of component-based adaptive
Web presentations based on a rather small example. However, during the “evolution” of the
work presented in this thesis a number of component-based Web presentations have been
developed. They vary in size and complexity, address different application scenarios, and
support different kinds of both static and dynamic adaptation. This section provides a
representative overview of them.

Component-based MMT homepage prototype: As one of the first demonstrators se-
lected pages of the Web site of the author’s research group were realized in a device
independent component-based way. Figure 5.22 depicts two versions of the research
group’s welcome page for desktop browsers and PDAs, respectively. The demonstra-
tor provides mainly presentation adaptation based on the adjustment of the utilized
layouts. Furthermore, the inserted media elements are also adapted (regarding their

c© Copyright TU Dresden, Zoltán Fiala 133

Chapter 5. The Authoring Process and its Tool Support

Figure 5.22: Component-based MMT homepage prototype

size, resolution, and other quality attributes) based on the capabilities of the appropri-
ate end device. The component-based MMT homepage prototype was authored with
conventional XML editors.

SoundNexus Prototype: The SoundNexus prototype is a data-driven Web presentation
providing online information on music genres, bands (performers), and their albums.
It was completely authored with the AMACONTBuilder to demonstrate its various
editor modules and its support for creating component templates [Niederhausen 2006,
Tietz 2006].

The prototype offers different kinds of content, navigation, and presentation adaptation.
As an example, the list of albums shown to the user is generated dynamically, and is
adjusted to his age, genre preferences, and personal voting. Furthermore, a TOP 10
list of the most popular albums (based on the votings of other users) is also provided.
As also depicted in Figure 5.23, the presentation of this TOP 10 list makes use of the
adaptation technique link annotation, i.e. the albums belonging to the current user’s
favorite genre are highlighted with a special icon.

Finally, the presentation of genres, bands, and albums is also adjusted to the device
capabilities of the current user, i.e. different media elements with different modality
(image vs. video) and media quality (large resolution image vs. small resolution image)
can be used, respectively. For further information on the SoundNexus prototype the
reader is referred to [Niederhausen 2006, Tietz 2006].

Model-driven Painting Gallery Prototype: This prototype demonstrates the automatic
generation of a component-based adaptive Web presentation based on high-level (Hera-
AMACONT based) model specifications, and is the actual implementation of the con-
cepts described in Section 5.3. The user has the possibility to choose from a number of
possible presentation model specifications and view the generated Web pages, accord-
ingly.

134 c© Copyright TU Dresden, Zoltán Fiala

5.4. Summary and Realized Applications

Figure 5.23: SoundNexus prototype

The prototype was presented in 2004 at the 4th International Conference of Web Engi-
neering (ICWE04 [Fiala et al. 2004a]) and is available online at [@ICWE2004Demo].
Selected screenshots of the generated presentations were already presented in Fig-
ure 5.19 and Figure 5.20 of this chapter.

Adaptive Web Information System for presenting student works: In order to dem-
onstrate the capabilities of the component-based document model by example of a
larger Web application, an adaptive Web information system aimed at the presentation
of students’ works at the author’s university was designed and developed [Starke 2005].
It allows students of the multimedia technology study program to upload multimedia
material created in different classes and courses (e.g. pictures, video and audio material,
flash presentations, etc.), as well as to navigate through this information in an adaptive
way.

Besides student works, the application offers information on the current and past
semesters, their courses, as well as the persons responsible for them. The applica-
tion supports for presentation layer adaptation based on its users’ end devices and
layout preferences by adjusting the the quality (e.g. different image resolutions), the
type (image vs. flash presentations), as well as the spatial arrangement of the included
media elements. Furthermore, it also adapts the structure and the interconnection of
pages based on security aspects (different versions internal vs. external visitors), the

c© Copyright TU Dresden, Zoltán Fiala 135

Chapter 5. The Authoring Process and its Tool Support

Figure 5.24: AWIS for presenting student works

visiting students’ experience (their actual semester), etc. The application was success-
fully utilized at different courses at the author’s research group. Figure 5.24 presents
two screenshots of the application, one for desktop PCs and another one for PDAs.
For more information on its design and realization the interested reader is referred
to [Starke 2005, @kpss05].

Note that all mentioned prototype applications are available at the AMACONT project’s
homepage [@AMACONT].

136 c© Copyright TU Dresden, Zoltán Fiala

Chapter 6

A Generic Transcoding Tool for Making Web
Applications Adaptive

“This here’s a re-search laboratory. Re-search means look again, don’t it? Means
they’re looking for something they found once and it got away somehow, and now they
got to re-search for it?”1

6.1 Motivation and Introduction

In the preceding chapters of this thesis a component-based document format for adaptive
dynamic Web documents was introduced. In combination with a structured authoring pro-
cess and supported by a graphical authoring tool, it facilitates the efficient development of
personalized ubiquitous Web presentations from reusable implementation artefacts. It was
illustrated how different application aspects (concerning content, navigation, presentation,
and their appropriate adaptation issues) can be systematically considered by guiding com-
ponent developers through the phases of the overall Web engineering process. However, the
resulting authoring framework assumes to create adaptive Web applications “from scratch”,
not providing sufficient support for developers (providers) who intend to add adaptation to
an already existing Web-based system.

On the other hand, there already exists a number of formats, methodologies, and frame-
works for Web application engineering. A detailed overview of the most important approaches
was provided in Chapter 3. As discussed there, only some of them support (selected) issues
of personalization and device dependency. Therefore, this chapter deals with the question
how the lessons learned from engineering component-based adaptive Web presentations can
be applied (i.e. generalized) for extending a broader range of existing Web applications by
additional adaptation concerns.

In order to answer this question, it is important to investigate the way how existing Web
Information Systems are typically implemented. As can be observed, they are generally based
on a series of data transformations that convert some input content (in general XML data)
to a hypermedia presentation in a particular implementation format, such as (X)HTML,
cHTML, WML, X3D, etc. These data transformations are controlled by a specification
(mostly in form of a specific XML-based document format) that dictates the application’s
semantic, navigational, and presentational behavior [Fiala and Houben 2005]. Such a typical
pipeline-based (staged) Web presentation generation architecture is illustrated in Figure 6.1.
The original content is subject to a number of transformations that subsequently lead to the
desired hypermedia presentation.

Note that Web Information Systems supporting adaptation are realized in a similar way.
1Kurt Vonnegut, Jr.: Cat’s Cradle, 1963

137

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

content transformer
Web

pres.transformer transformer

Figure 6.1: WIS implementation based on data transformations

The only difference to non-adaptive WISs is that they utilize adaptation-specific content
transformation steps that are additionally parameterized by available external information
describing the user’s actual usage context. Usually, this information is referred to as a user
model or a context model . It is typically used (referenced) by adaptation conditions that
are attached to (i.e. contained by) fragments of the input content. A content transformation
pipeline containing such an adaptation-specific transformation step is illustrated in Figure 6.2.
Note, however, that there are also scenarios where several transformation steps utilize context
information.

content +

adapt. logic
transformer

Web

pres.transformer
context-based

transformer

context

Figure 6.2: WIS implementation with adaptation

In general, most content transformations in a WIS implementation are very specific to the
formats or models dictated by the underlying methodology or framework. Nevertheless, it
can be recognized that adaptation-specific transformations have a lot in common. As iden-
tified by Brusilovsky’s surveys [Brusilovsky 2001], they typically perform similar operations
on (groups of) structured content fragments (e.g. document components, data units, slices,
document nodes). Well-known adaptation operations on such structured content fragments
are conditional inclusion, selection, removal, insertion, sorting, etc. (see Section 2.2.3). As
also demonstrated by the component-based document format introduced in Chapter 4, such
basic adaptation operations (transformations) can be used to realize a variety of adaptation
concerns.

Given the similarity and the generic nature of such “adaptation-specific content transfor-
mations”, the key observation can be made that major parts of them can be well separated
from the rest of a Web application’s hypermedia generation pipeline. What is more, this
separate implementation of selected adaptation transformations (operations) also allows for
“extracting” their configuration from the document formats describing the underlying Web
application. As a consequence, it becomes possible to realize given adaptations based on
generic transformer modules that can be appropriately controlled by an external configura-
tion. Moreover, when both the implementation and appropriate configuration of adaptation
operations can be separated from the original application, then it also becomes possible to
add adaptation to an existing Web-based system.

A transformation scenario utilizing such a generic transformer module is depicted in Fig-
ure 6.3. Note that besides the information describing the current usage context, this trans-

138 c© Copyright TU Dresden, Zoltán Fiala

6.1. Motivation and Introduction

former additionally takes an external adaptation recipe (i.e. configuration) into account, that
dictates which adaptation operations it has to perform on (which selected parts of) its in-
put content. That is to say, the specification of adaptations is not an inherent part of the
input content anymore. Quite the opposite, it is “outsourced” to the generic transformer’s
configuration and addresses the content fragments (e.g. document components, data units,
sections, etc.) to be adapted externally. Thus, the concept of document components (frag-
ments) containing inherent adaptation descriptions can be generalized for a broader range of
Web applications by the external assignment of adaptation descriptions to parts (fragments)
of an arbitrary XML-based document format.

content transformer
Web

pres.transformer
generic

adaptation

module

context
adapt.

recipe

Figure 6.3: WIS implementation based on generic adaptation modules

To demonstrate this idea, this chapter introduces the Generic Adaptation Component
(GAC [Fiala and Houben 2005]), a generic transcoding tool aiming at making existing Web
applications adaptable and adaptive2. The provider of a Web Information System can use
it as a stand-alone module, configure it, and integrate it into his Web site architecture. For
the configuration of the GAC an RDF-based rule language is introduced, allowing to specify
rules for both content adaptation and context data updates. Furthermore, a set of operations
for implementing these rules will be provided.

Note that the separation of adaptation from the rest of the application might obviously
result in a restricted adaptation support compared to adaptive Web applications that have
been designed for adaptation from the beginning. However, it will be demonstrated that
even this transformation-based “lightweight” adaptation extension can be efficiently utilized
in many different application scenarios.

The rest of this chapter is structured as follows. After briefly discussing related approaches
in Section 6.2, an overview of the architecture, the main functionality, and the most important
application scenarios of the GAC is given (Section 6.3). Then, Section 6.4 describes central
issues of the GAC’s configuration in more detail, among them the requirements towards
its input data, the adaptation context data it utilizes, and its RDF-based configuration
language. To help the reader understand the main concepts, all these aspects are explained
by a running example. The implementation details of the GAC based on the component-based
document format’s presentation generation architecture are introduced in Section 6.5. Finally,
Section 6.6 gives a comparison of the transcoding-based adaptation approach described in this
chapter and the component-based approach explained in the previous chapters, by discussing
their main advantages and disadvantages.

2The GAC was designed and developed within the scope of a long-term collaboration between the author’s
research group (the AMACONT project [@AMACONT]) and the Hera research program [@HERA]. Note,
however, that the GAC’s basic concepts, its rule-based configuration language, and its implementation are a
contribution of the author.

c© Copyright TU Dresden, Zoltán Fiala 139

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

6.2 Existing Web Transcoding Solutions

Recently, a number of transcoding solutions for adapting Web applications have emerged.
Most of them aim at adjusting HTML-based Web content to limited presentation capabilities,
like those of small hand-held devices [Alam and Rahman 2003].

Many approaches utilize so-called transcoding heuristics [Bickmore et al. 1999] for the
fully automatic re-authoring of Web pages. The most important characteristics of such
heuristics is that they do not take into account the structure or semantics of a partic-
ular Web page, thus they provide transcoding operations that are applicable to (almost)
arbitrary Web pages. The most widely used heuristics are first sentence elision, image re-
duction [Bickmore et al. 1999], video/audio transcoding [Smith et al. 1998], and outlining
(i.e. the replacement of section headers with hyperlinks pointing to the corresponding text
blocks [Hwang et al. 2002]). Furthermore, there are also approaches aimed at removing ad-
vertisements, link lists, or empty tables [Gupta et al. 2003], as well as automatically abbrevi-
ating common words [Gomes et al. 2001]. While being generally applicable, these approaches
do not take into account the specific structure and the domain-specific semantics of the un-
derlying Web content sufficiently. Furthermore, as a consequence of their heuristic nature,
the result of the adaptation (and especially the quality or usability of the resulting Web
pages) is often unpredictable [Hwang et al. 2003].

Barrett et al. [Barrett and Maglio 1999] define intermediaries as computational entities
that operate on information as it flows along a stream, and introduce the Web Intermedi-
aries (WBI) [Barrett et al. 1997] approach, a framework for manipulating Web information
streams. Data manipulation functionality is implemented by autonomous agents that can
be deployed on the server, the client, or as proxies. The approach supports four kinds
of agents: monitors, editors, generators, and autonomous agents. Utilizing WBI, Hori et
al. [Hori et al. 2000] present an annotation-based transcoding solution for accessing HTML
documents from information appliances like PDAs, cell phones, and set-top boxes. RDF-
based external annotations specifying content transformation rules such as content alter-
native selection or page splitting hints can be assigned to fragments of particular Web
pages [Hori et al. 2002]. The main benefit of this approach is that both the structure and
content of the input data can be taken into account. Furthermore, as the adaptation meta-
data is separated from the content itself, different application-specific adjustment scenarios
are possible. However, even this approach is restricted to the transcoding of HTML content
mainly based on device capabilities. There is no support for dynamic adaptation, nor for
maintaining a broader range of contexts (e.g. personalized user profiles).

A similar solution based on the assignment of external transformation instructions to Web
documents is provided by RDL/TT (Rule Description Language for Tree Transformations
[Schaefer et al. 2002, Osterdiekhoff 2004]). Still, instead of declarative annotations, a Java-
based imperative transcoding language is utilized. Again, this language focuses also primarily
on the specifics of HTML-based Web documents.

Besides for device adaptation, transcoding techniques are also intensively used to make
Web applications accessible for visually impaired users [Asakawa and Takagi 2000]. Again,
some solutions are based on external annotations. As an example, we mention the Travel
Ontology [Yesilada et al. 2004], allowing to (semi-)automatically transform Web pages to
a form optimized for voice output. Aurora [Huang and Sundaresan 2000] pursues a more
semantic approach and uses domain-specific schemas describing the functional semantics of
Web objects to extract their content and automatically adapt it to different user requests.

Looking at related work on Web transcoding, one can see that existing approaches mainly

140 c© Copyright TU Dresden, Zoltán Fiala

6.3. GAC: Generic Adaptation Component

allow static adaptation (adaptability), i.e. the adjustment of Web pages to a static set of
user or device parameters. Moreover, most solutions are restricted to the presentation layer
of Web applications, aiming at transforming HTML pages to limited device capabilities or
users’ visual impairments. Still, we claim that transcoding could be used for a broader range
of adaptation and personalization issues, especially for adaptivity, i.e. adaptation according
to parameters that may change while the Web presentation is being accessed or browsed.

6.3 GAC: Generic Adaptation Component

6.3.1 GAC Overview

As mentioned above, the GAC is a generic transcoding tool aimed at adding adaptation to
existing Web applications. Figure 6.4 shows how it is integrated into a typical hypermedia
generation process: it processes XML-based Web content provided by some Web application
generator and adjusts it to the preferences and properties of individual users and their clients.
As a generic component, the GAC can perform different adaptations on its input, the recipe
for which is specified by its configuration. This configuration consists of a set of adaptation
rules, each dictating a different content adaptation aspect. To take (besides the input)
the current usage context into account, adaptation rules can reference arbitrary parameters
from the adaptation context data. Finally, in order to support adaptivity, the configuration
also contains update rules allowing to manipulate this context data according to the user’s
navigation and interaction history.

Web

pages

Web

application

generator
data

generic

adaptation

component

adapted

Web

pages

config
adaptation

context

data

XML-

based

Figure 6.4: GAC abstract system overview

6.3.2 Possible Application Scenarios

As a generically applicable transcoding tool, the GAC does not make any assumptions (re-
strictions) to the preceding Web content generation process3. Quite the opposite, it can
support a variety of application scenarios depending on how its XML-based input is created
or generated. The following examples summarize a number of important GAC application
areas.

3As will be described in more detail in Section 6.4.1, the only assumption is that the the original content
generation process delivers data in XML format.

c© Copyright TU Dresden, Zoltán Fiala 141

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

Transcoding static Web pages

Figure 6.5 shows a basic transcoding scenario where the “Web application generation process”
acts as a traditional Web server delivering static XHTML pages. As an example, the GAC
could adapt those pages to limited devices by filtering out large images, omitting videos, or
eliding tags not interpretable on them. Furthermore, it could also perform user specific per-
sonalization tasks, such as changing font colors or removing information being unimportant
for the user (e.g. decoration elements or links to forbidden sites).

static

XHTML

pages
GAC

adapted

Web

pages

context

data

context

data

Figure 6.5: GAC scenario 1. - Transcoding static XHTML

Adaptive WIS Front-end

A more complex scenario is shown in Figure 6.6. In this case the GAC is used as the adaptive
front-end of a more complex Web Information System. Based on its input data (which
is typically retrieved from a data source, e.g. a database), this WIS delivers dynamically
generated Web pages.

Web

pagesWISdata GAC

adapted

Web
pages

presentation

adaptation

device

independent

device

dependent

context

data

context

data

Figure 6.6: GAC scenario 2. - Adaptive WIS front-end

The WIS might be non-adaptive, or it might have already performed some content- or
navigation-specific adaptations. Consequently, the role of the GAC could be to perform
presentation-specific adaptation operations on those pages. This could include the adjustment
of content elements to the media types and tag structures supported by a specific device
or document format, the manipulation of the spatial adjustment of those content elements
on the generated pages, or even the consideration of the current user’s layout preferences
(background images, link colors, etc.). However, the fact that the GAC operates “only” on
the presentation level of the underlying Web application means that its adaptation capabilities
are limited, respectively.

142 c© Copyright TU Dresden, Zoltán Fiala

6.3. GAC: Generic Adaptation Component

Transcoding with multiple GACs

While the above examples utilize only one GAC, it is possible to employ several independent
GACs at different stages of the Web presentation generation process. As discussed in Sec-
tion 5.3.2, a Web Information System can be efficiently realized with three layers, namely
the semantic layer, the navigation layer, and the presentation layer, each responsible for its
specific adaptation processes. Thus, as an extension of the preceding scenario, a non-adaptive
WIS can be extended with a GAC each layer (see Figure 6.7). As a matter of course, each
GAC is required to deliver data corresponding to the requirements of its successor layer.

presentation

adaptation

navigation

adaptation

presentation

layer
semantic

layer

WISdata GAC WIS GAC

adapted

Web
pages

context

data

context

data
context

data

context

data

GAC WIS

context
data

context
data

semantic

adaptation

navigation

layer

Figure 6.7: GAC scenario 3. - Adaptive WIS based on GAC pipeline

Separation of Adaptation Aspects with Multiple GACs

The GAC is a generic component aimed at performing different kinds of adaptations on its
input data. Still, adaptation in a Web application is typically centered around a number of
well separable independent adaptation concerns (or adaptation aspects). For instance, the
navigational structure of a Web application might be adjusted according to a number of (pos-
sibly orthogonal) design concerns, such as device dependency, localization, personalization,
or security. While all of these adaptations can be reduced to context-based data transforma-
tions, the provider of a Web application might need to handle them independently, i.e. by
using a separate GAC for each of them.

GAC

adapted

Web

pages

context

data

GAC

context

data

context

data

security device independence

Web

pages

Figure 6.8: GAC scenario 4. - Separation of concerns with multiple GACs

Figure 6.8 illustrates such an adaptation scenario consisting of two GACs. While the first
one performs adaptation operations supporting security issues (e.g. by hiding trustworthy
content from users that are logged in as guests), the second one targets device independence
(e.g. by filtering out media items being not suitable for a certain client device). Note that
this separation of adaptation aspects allows providers to easily add (or remove) additional

c© Copyright TU Dresden, Zoltán Fiala 143

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

adaptation concerns to an application without the need to change (reconfigure) or rewrite it
completely. Furthermore, they can also easily reconfigure the priority of adaptation concerns
by exchanging the order according to which the utilized GACs are switched in line. For more
information on the advantages of this separation of concerns by using multiple GACs the
reader is referred to [Casteleyn et al. 2006a, Casteleyn et al. 2006b].

Adaptivity Support

As mentioned in Section 6.2, most transcoding-based solutions provide adaptability, i.e. the
adaptation based on a static user or device profile, not taking into account the user’s browsing
behavior. Still, modern AWISs with their increased interactivity require to support dynamic
adaptation (adaptivity). As examples we mention the elision of information the (returning)
user has already seen, the recommendation of links to pages the user might have become
interested in, but also the dynamic reorganization of the WIS’s presentation layer whenever
he resizes his browser window.

data GAC

adapted

Web

pages

context

data

re
a
d

w
rite

Figure 6.9: GAC scenario 5. - Support for adaptivity

To support adaptivity, the GAC has access to adaptation context data, and it can not
only read but also dynamically update that context data by means of so-called update rules
(see Figure 6.9). Consequently, the example scenarios mentioned above can be extended by
even more sophisticated adaptation mechanisms. As a possible extension of the first scenario,
the GAC can monitor the pages visited by users, maintain the knowledge they obtain when
reading those pages, and use this knowledge to dynamically order links to related pages.

6.3.3 Running Example Overview

In order to help the reader understand the main concepts, the architecture, and the con-
figuration of the GAC, the rest of this chapter will explain these details based on a small
example application. This selected example is a dynamic Web Information System provid-
ing information about a research collaboration between the author’s research group (the
AMACONT project [@AMACONT]) and the Hera research program of the Vrije Univer-
siteit Brussels [@HERA]. There are members working at the project, each characterized by
a name, a CV, a picture, as well as some contact data (email address, phone number etc).
They produce publications on their research efforts, which are described by a title, the name
of the corresponding conference or journal, the year of publication, and an abstract.

The example Web application consists of dynamically generated Web pages in the XHTML
format (see Figure 6.10). The starting page of the example application is the project home-
page. It provides basic information on the project (title, description, budget information) as
well as a dynamically generated link list consisting of its members’ pictures as thumbnails.

144 c© Copyright TU Dresden, Zoltán Fiala

6.4. GAC Configuration

By clicking on a thumbnail the user can navigate to the corresponding member’s page that
contains his name, contacts, CV, image, and a list of his publications. This list again leads
to another page describing the corresponding publication in more detail.

Figure 6.10: GAC running example overview

As this Web presentation does not take into account the user‘s preferences, nor the client‘s
capabilities, the GAC will be used to add personalization and adaptation to it. The config-
uration and realization of the supported adaptations will be shown in the following.

6.4 GAC Configuration

As shown in Figure 6.4, the most crucial issues for understanding the overall architecture and
functionality of the GAC are 1) the requirements towards the input content to be adapted,
2) the structure of the adaptation context data, and 3) the RDF-based rule language used to
configure the corresponding adaptation operations. In accordance with the running example
described above, this section explaines these issues in more detail.

6.4.1 Input Data Requirements

The GAC gets its input data from a Web presentation generation process, which can be e.g.
a (part of a) legacy Web application. According to its configuration and the information
describing the current usage context, it performs transformations on that input. Thus, the

c© Copyright TU Dresden, Zoltán Fiala 145

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

transformations need access to the input content, i.e. a definition (of an interface) is required
that states the structural elements to be encountered in it.

For the sake of generality, arbitrary XML-based Web content is allowed as input for the
GAC. This enables the GAC to process a wide spectrum of content, both Web pages delivered
in a standardized format ((X)HTML, cHTML or WML), as well as richly annotated XML
data that abstracts from a specific output format and provides more information about the
structure and semantics of its content. In general, the better structured and annotated the
input data is, the more sophisticated adaptations can be specified.

As discussed above, the example application (to be adapted) used throughout this chapter
delivers Web pages in XHTML. Furthermore, it is assumed that its designer put a focus on the
separation of content and layout, and structured the generated presentation appropriately.
Listing 6.1 shows the structure of a Web page presenting information about a project member.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ... >
2 <html>
3 ...
4 <body>
5 <div class="member" id="member_ID1">
6
7
8 <div class="membername" id="membername_ID1">
9 <h1>Dipl-Inform. Zoltán Fiala</h1>

10 </div>
11 ...
12
13 <div class="membercv" id="membercv_ID1">
14 <p>Zoltán is a PhD student at Dresden University of Technology ...</p>
15 </div>
16 ...
17
18 <div class="publications" id="publications_ID1">
19
20 </div>
21
22 </div>
23 ...
24 </body>
25 </html>

Listing 6.1: GAC input content example

As can be seen, the meaningful content elements (e.g. the member’s name, CV, publi-
cations, etc.) to be presented are appropriately encapsulated by div elements and are also
identified by a class attribute and a unique id attribute. As will be shown later, the presence
of such content structuring tags facilitates to apply a number of content-specific adaptations.
Note, however, that the usage of this structure in our example does not restrict the GAC’s
generality. First, it will be shown that GAC rules are independent of specific XML grammars.
Second, most hypermedia document formats and WIS approaches utilize similar hierarchi-
cally ordered data containers to structure their Web content. As important analogies we
mention WebML’s data units [Ceri et al. 2000], Hera’s slices [Frasincar et al. 2002], AHA!’s
page fragments [De Bra et al. 2002], CHAMELEON’s components [Wehner and Lorz 2001],
HMDoc’s document nodes [Westbomke and Dittrich 2002], or even the Section elements of
the upcoming W3C standard XHTML 2.0 [Axelsson et al. 2004].

146 c© Copyright TU Dresden, Zoltán Fiala

6.4. GAC Configuration

6.4.2 Adaptation Context Data

The adaptation operations executed by the GAC are parameterized by the adaptation context
data. It contains up-to-date information on the user, his device, and entire usage context
which the GAC has read and write access to. The structure of the GAC’s adaptation context
data is based on CC/PP, an RDF grammar for describing device capabilities and user prefer-
ences. As mentioned in Section 4.5.2, it represents context information based on a two-level
hierarchy of components and their attributes, the latter of which are described as name-value
pairs.

The GAC’s configuration language (which will be described in more detail in Section 6.4.3)
refers to context data parameters as variables of the form $paramname, where paramname is
a literal consisting of alphanumeric characters. Moreover, it also allows for array-like context
parameters in the form $paramname[index], where the index of such an array is again
an arbitrary literal of alphanumeric characters4. The usage of such array-like structures is
important when handling context information which is somehow related to the underlying
data (e.g. the number of times the user was been presented a given content element) and will
be demonstrated in Section 6.4.3 by a number of examples.

As it will be shown later, the usage of CC/PP allows to “reuse” the context modeling
framework of the modular document generation architecture presented in Section 4.5 for the
GAC’s implementation. An excerpt from the CC/PP-based context model of that architec-
ture was already shown in Section 4.5.2. As mentioned there, it can be extended arbitrarily
by the introduction of new profiles.

6.4.3 The Rule-based GAC Configuration Language

The GAC is controlled by its RDF-based configuration. It consists of a set of rules that
specify the content units to be adjusted, the adaptations to be performed on them, and (in
the case of adaptivity) the way the adaptation context data has to be updated. Rules are
declarative, i.e. they describe what should be done, rather than how. This means, for example,
that different implementations are possible for a rule specification. This is a main benefit
compared to imperative approaches (e.g. RDL/TT [Schaefer et al. 2002]) that explicitly focus
on a concrete implementation.

A graphical excerpt of (a part of) the RDF schema defining the GAC rule hierarchy is
depicted in Figure 6.11. The top of this hierarchy is the abstract class Rule. A Rule is always
bound to a Condition, i.e. it is activated if and only if that condition holds. A Condition
is an arbitrary complex Boolean expression consisting of constants, parameters from the
adaptation context data, as well as logical and arithmetic operations. Rules can be either
adaptation rules or update rules. Whereas adaptation rules describe how the input data has
to be transcoded, update rules aim at manipulating the adaptation context data. Along the
lines of the example application, the following sections describe the corresponding rule types
and their configuration options in more detail.

6.4.4 Adaptation Rules

Adaptation rules describe basic adaptation operations to be performed on specific parts or
structures of the input content. As depicted in Figure 6.11, they all inherit from the abstract
class AdaptationRule. They have a selector property that contains an XPath expression

4In order to stay conform with the RDF-based syntax of CC/PP, such parameters are serialized as RDF
properties called “paramname index”.

c© Copyright TU Dresden, Zoltán Fiala 147

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

ReplacementRule

AdaptationRule

Rule

UpdateRule

AppearanceRule
LinkWrapperRule

SortingRule

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

hasCondition

Condition

rdfs:range

rdfs:domain

Selector

selector

rdfs:range

rdfs:domain

InclusionRule

rdfs:subClassOf

PaginatorRule

Figure 6.11: GAC rule schema excerpt

[Berglund et al. 2004] in order to unequivocally identify the parts of the XML input content
to be adapted. Whenever there are several adaptation rules addressing the same part of the
input content, they are ordered according their priority properties. The priority property
of an adaptation rule is a non negative integer value. Its usage is optional, the default
priority value is 0. Adaptation rules of a given GAC configuration are executed according
to the descending order of their priorities, i.e. the rule with the highest priority property is
processed first. Adaptation rules with the same priority are executed according to the order
of their occurrence in the GAC’s RDF-based configuration document.

Table 6.1 summarizes the properties used for parameterizing adaptation rules. It specifies
their names, their meaning, their usage (i.e. whether they are required or optional), as well
as their possible values.

Name Meaning Usage Values

selector Identifies the parts of the input
content to be transcoded

required XPath expression

priority Rule priority optional Non negative integer

Table 6.1: Properties of an adaptation rule

In order to use adaptation rules (and the corresponding adaptation operations) in different
application scenarios, a common set of generally applicable rule primitives were identified.
Based on Brusilovsky’s survey on basic methods and techniques for content and naviga-
tion adaptation [Brusilovsky 2001], as well as own results concerning presentation adapta-

148 c© Copyright TU Dresden, Zoltán Fiala

6.4. GAC Configuration

tion [Fiala et al. 2004a], following rules have been selected and implemented5:

6.4.4.1 Appearance Rule

An appearance rule (Class AppearanceRule) realizes one of the most basic adaptation meth-
ods: the selected content is included in the output only if the associated condition is valid.
Appearance rules can address arbitrary (sets of) XML elements, attributes, and text nodes.
In the case when an element is selected, all of its descendant nodes are concerned, as well.
An appearance rule has no additional parameters.

The two rule examples in Listing 6.2 address device dependency by adjusting the original
Web content to the limited presentation capabilities of handheld devices (PDAs). While the
first one omits all images from the input XHTML documents, the second one removes the lists
of publications from them. The XML elements (fragments) to be elided are selected by the
XPath expressions in the rules’ selector properties (see lines 1 and 8). The conditions address
parameters from the adaptation context data which are denoted with a $ sign, respectively.

1 <gac:AppearanceRule rdf:ID="hideImageRule" gac:selector="//img">
2 <gac:hasCondition>
3 <gac:Condition gac:when="($Device!=’pda’)"/>
4 </gac:hasCondition>
5 </gac:AppearanceRule>
6
7 <gac:AppearanceRule rdf:ID="hidePubListRule"
8 gac:selector="//div[@class=‘publications‘]">
9 <gac:hasCondition>

10 <gac:Condition gac:when="($Device!=’pda’)"/>
11 </gac:hasCondition>
12 </gac:AppearanceRule>

Listing 6.2: Appearance rule example

While these appearance rules realize static adaptation, Listing 6.3 also defines one for
adaptivity. The CV of a project member is shown only for users who visit that page for the
first time (i.e. it is elided for returning users). The Visited variable from the adaptation
context data is in this case an array which is parameterized by the id attribute of the currently
selected XML element (in this case the element representing members’ CVs). This way the
condition is appropriately adjusted to each selected CV instance. As a matter of course,
this example assumes that the user’s visits to project members’ homepages (and CVs) are
appropriately tracked during his navigation through the Web application. The corresponding
rule for updating the adaptation context data will be shown later in Section 6.4.5.

6.4.4.2 Element Filter Rule

While an appearance rule allows to include/exclude a whole XML fragment, in some cases it
is meaningful to filter out only an element itself and retain its descendant elements (nodes).
This is typically the case when processing XML elements aimed at formatting the underlying
content, such as the b (bold), i (italics) or u (underline) tags of HTML. For this purpose the
so-called element filter rule (Class ElementFilterRule) was developed. Its selector property

5Since these rules inherit from the abstract AdaptationRule, only their additional properties will be men-
tioned and specified in the rest of this chapter.

c© Copyright TU Dresden, Zoltán Fiala 149

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

1 <gac:AppearanceRule rdf:ID="hideCVRule"
2 gac:selector="//div[@class=’membercv’]">
3 <gac:hasCondition>
4 <gac:Condition gac:when="($Visited[@id]==0)"/>
5 </gac:hasCondition>
6 </gac:AppearanceRule>

Listing 6.3: Appearance rule example Nr. 2

can address arbitrary XML elements in the input content. Similar to appearance rules, it has
no additional parameters.

The example shown in Listing 6.4 disables all hyperlinks pointing to the detailed descrip-
tion of publications (on the pages of project members) for users that are logged in as guests.
It filters out all corresponding a elements but does not remove the link anchors (in this case
the titles of the publications). Thus, in this particular scenario this rule implements the
adaptive navigation technique link disabling (see Section 2.2.3).

1 <gac:ElementFilterRule rdf:ID="disablePubLinksRule"
2 gac:selector="//div[@class=’publications’]//a">
3 <gac:hasCondition>
4 <gac:Condition gac:when="$Login==’Guest’"/>
5 </gac:hasCondition>
6 </gac:ElementFilterRule>

Listing 6.4: Element filter rule example

6.4.4.3 Inclusion Rules

An inclusion rule (Class InclusionRule) realizes the inverse mechanism, i.e. the insertion
of external content into the processed Web document. If the associated condition is valid,
XML data from a specific URI (specified by the additional what property of the inclusion
rule) is included in the output document at the place determined by the rule’s selector (see
Table 6.2).

The data to be inserted has to be well-formed XML. Furthermore, the selector property
of an inclusion rule has to address an element node. The optional where property defines
whether the data to be included should be inserted as a preceding sibling, a following sibling,
or as the first child element of the selected XML element. Its default value is child. Whenever
the values preceding or following are used, the selected XML element may not be the input
XML document’s root element. Note that this generic mechanism is a powerful means of
data insertion: the addressed URI can be e.g. the target URL of an HTTP request or even a
complex query to a dynamic data source.

The example shown in Listing 6.5 includes an advertisement at the bottom of the project
homepage for desktop PCs.

While the inclusion rule facilitates the insertion of an arbitrary XML fragment, the at-
tribute inclusion rule (class AttributeInclusionRule) aims at inserting an XML attribute into
an XML element. It has two additional properties that indicate the new attribute’s name
and value, respectively (see Table 6.3).

150 c© Copyright TU Dresden, Zoltán Fiala

6.4. GAC Configuration

Name Meaning Usage Values

what URL pointing to the content to
be included

required String describing an
URI

where relative position to the selected
element

optional preceding|following|child

Table 6.2: Properties of an inclusion rule

1 <gac:InclusionRule rdf:ID="includeAdvertRule"
2 gac:selector="//div[@class=’project’]/*[last()]">
3 <gac:hasCondition>
4 <gac:Condition gac:when="($Device==’desktop’)"/>
5 </gac:hasCondition>
6 <gac:what>http://www-mmt.inf.tu-dresden.de/gacadvert</gac:what>
7 <gac:where>preceding</gac:where>
8 </gac:InclusionRule>

Listing 6.5: Inclusion rule example

6.4.4.4 Replacement Rules

A replacement rule (Class ReplacementRule) substitutes specific parts of the input content
with an alternative value. Its selector property can address XML elements, attributes, or
text nodes. The additional with parameter specifies the new value of the selected document
part and is a string (optionally containing context data parameters). While in the case of
XML elements their names are changed, attributes and text nodes get a new value.

As an example, the simple replacement rule shown in Listing 6.6 enlarges XHTML headers
for users with visual impairments by exchanging H3 tags with H1 elements.

1 <gac:ReplacementRule rdf:ID="replaceHeaderRule"
2 gac:selector="//H3">
3 <gac:hasCondition>
4 <gac:Condition gac:when="($visuallyimpaired==’yes’)"/>
5 </gac:hasCondition>
6 <gac:with>H1</gac:with>
7 </gac:ReplacementRule>

Listing 6.6: Replacement rule example

While the replacement rule allows the manipulation of single XML tags, the code replace-

Name Meaning Usage Values

name name of the attribute to be included required String

value value of the attribute to be inserted required String

Table 6.3: Properties of an attribute inclusion rule

c© Copyright TU Dresden, Zoltán Fiala 151

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

Name Meaning Usage Values

with Indicates a new element name, attribute
value or text node content

required String

Table 6.4: Properties of a replacement rule

ment rule (Class CodeReplacementRule) is a slightly modified version of it that enables to
replace larger XML code fragments. The rule’s selector property addresses the starting XML
element of the document fragment to be replaced. However, in this case the with property is
not a simple literal, rather a URI addressing a “remote” code fragment (see Table 6.5).

Name Meaning Usage Values

with URI pointing to an XML fragment required String

Table 6.5: Properties of a code replacement rule

6.4.4.5 Link Wrapper Rule

Link wrapper rules (Class LinkWrapperRule) are used to manipulate the target URLs of
hyperlinks found in the input content. Their main application is the modification of hyperlink
targets encountered in the input XML documents. In this way users’ clicks on the appropriate
links can be redirected to a target defined by the GAC configurator. Furthermore, according
to the adaptation context data the link wrapper rules can also add additional (personalized)
request parameters to hyperlinks.

In order to identify the hyperlink references (URLs) to be manipulated the rule’s selector
property is used. The toURL property specifies the new URL (to which the link has to
be redirected). Furthermore, a number of parameters in form of name/value pairs can be
defined in order to attach arbitrary request parameters to the link (see Table 6.6). The
optional keepOldURL parameter indicates that the original URL should be retained as a
special request parameter of the new URL. In this case the oldURLParamName property
determines the name of this special request parameter.

In the running example a link wrapper rule is used to realize a security-specific adaptation.
Its goal is to deactivate a hyperlink that points from the project homepage to another page
presenting information on the project’s budget. For users that are logged in as guests, the
appropriate rule redirects this link to the login page (see Listing 6.7).

1 <gac:LinkWrapperRule rdf:ID="loginRedirectRule"
2 gac:selector="//a[@href=’budget.html’]">
3 <gac:hasCondition>
4 <gac:Condition gac:when="($LogIn==’Guest’)"/>
5 </gac:hasCondition>
6 <gac:toUrl>http://www.gacexample.org/login.html</gac:toUrl>
7 </gac:LinkWrapperRule>

Listing 6.7: Link wrapper rule example

152 c© Copyright TU Dresden, Zoltán Fiala

6.4. GAC Configuration

Name Meaning Usage Values

toUrl Name of the new URL optional String

param Additional request parameter optional name/value
pair

keepOldURL Specifies whether the old URL
should be retained as a specific re-
quest parameter

optional true|false

oldURLParamName Name of the request parameter con-
taining the old URL

optional String

Table 6.6: Properties of a link wrapper rule

Note that a link wrapper rule can not only be applied to hyperlink targets but to arbitrary
XML attributes describing URLs, e.g. also to the action attributes of Web forms. The name
link wrapper rule is used because the adjustment of hyperlinks is the rule’s most often used
application scenario.

6.4.4.6 Sorting Rule

Whereas the rules mentioned above address single content units (XML nodes), there are also
rules adapting sets of content units, such as all child elements or all variants of a specific
content unit. One of them is the sorting rule (Class SortingRule) aimed at ordering sets of
XML elements according to one of their attributes. The elements to be sorted are addressed
by the XPath expression specified by the rule’s selector property. They are ordered based on
the value of the attribute defined by the sorting rule’s additional by property. This can be
either an XML attribute of the selected nodes, or a value of a context data parameter that
is parameterized by such an attribute. The order attribute dictates whether the ordering is
ascending or descending.

Name Meaning Usage Values

by Specifies the attribute according to
which the sorting is performed

required String

order Specifies if the ordering is ascending
or descending

required asc|desc

Table 6.7: Properties of a sorting rule

In our running example the list of project members shown on the project homepage is
sorted according to whether (and how often) the user already saw their homepages (see
Listing 6.8). The attribute according to which the sorting has to be performed is defined by
the adaptation context data parameter called Visited. It is an array that is parameterized
by the unique identifiers (id attributes) of content elements. Members the user was already
interested in are shown in the beginning of the list. Therefore, the rules order property has
the value desc. As no condition is defined, this rule is always executed. Note that this is also

c© Copyright TU Dresden, Zoltán Fiala 153

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

an example of adaptivity.

1 <gac:SortingRule rdf:ID="sortMemberRule"
2 gac:selector="//div[@class=’member’]">
3 <gac:by>$Visited[@id]</gac:by>
4 <gac:order>desc</gac:order>
5 </gac:SortingRule>

Listing 6.8: Sorting rule example

6.4.4.7 Paginator Rule

A paginator rule (Class Paginator Rule) aims at dividing sets of XML elements into a number
of smaller subsets, each containing only a predefined number of elements. It is typically
applied to efficiently place content elements into a subsequent series of grouping elements
(e.g. XML elements denoting container-like “grouping” structures such as pages, sections,
slices or components), so that only a limited number of content elements is shown in a single
group.

The rule’s selector property addresses the XML elements, the subelements of which should
be paginated. As shown in Table 6.8, these subelements are then grouped by grouping
elements, the name of which is specified by the additional group property. The number of
content units in each resulting group is determined by the number property. As a matter of
course, the size of the last group to be created can be less than number, because it contains
only the remaining elements.

Name Meaning Usage Values

group Name of the grouping element required String

number Number of subelements in each resulting
group

required Integer

Table 6.8: Properties of a paginator rule

6.4.5 Update Rules

Unlike adaptation rules, update rules (Class UpdateRule) aim at updating the adaptation
context data. They facilitate to change existing context parameters or to create new ones.
Optionally, they can also have a selector property. In this case they are triggered for each
selected XML node. Otherwise, they are activated only once (i.e. once each time the GAC
processes an input document).

The action performed by an Update Rule is specified in its do property, a string describing
a value assignment to an adaptation context data (ACD) parameter. The phase property
determines whether the rule is executed before or after the transcoding process. While the
update rules with the phase value pre are executed before adaptation rules, those with the
phase value post are processed after them. That is to say, while the effects of an update rule
with the phase value pre can already influence the actual adaptation transformations, the

154 c© Copyright TU Dresden, Zoltán Fiala

6.5. Implementation Issues

effects of an update rule with the phase value post can be perceived only at the next page
request. Since the usage of the phase property is optional, its default value is pre6.

Name Meaning Usage Values
selector selects parts of the input XML content required String

do Specifies the action to be performed required String

phase Specifies if the update rules is performed be-
fore or after the transcoding process

optional pre/post

Table 6.9: Properties of an update rule

Among the Adaptation Rules of our running example two rules supporting adaptivity
were mentioned (see Listing 6.3 and Listing 6.8). Both require to keep track of the content
elements already been visited by the user. This update mechanism can be easily supported
by the following very simple Update Rule (Listing 6.9).

1 <gac:UpdateRule rdf:ID="trackVisitsRule"
2 gac:selector="//div[@id]">
3 <gac:do>$Visited[@id]=true</gac:do>
4 <gac:phase>post</gac:phase>
5 </gac:UpdateRule>

Listing 6.9: Update rule example

The XPath expression in the rule’s selector attribute identifies all content elements by
addressing XML elements containing an id attribute. The value assignment described in
the rule’s do property tracks the fact that a content element was displayed by appropriately
setting the $Visited variable. Note that this variable was already referred to in the adaptation
rules shown in Listing 6.3 and Listing 6.8. As this rule is not associated with a condition it
is always triggered. However, since its phase attribute has the value post, it is activated only
after all other adaptation rules were performed. That is to say, its effect can be perceived
only at the user’s next page request when the appropriate adaptation rules are performed
again.

To demonstrate the “interplay” of update rules and adaptation rules, Listing 6.10 illus-
trates a more complex adaptation strategy consisting of three rules. The first rule aims at
counting a user’s page visits in the example application by incrementing the NumberOfClicks
variable for each requested page. Again, it has no condition associated, i.e. it is always trig-
gered. If the value stored in the $NumberOfClicks variable exceeds the average number of
page visits (counted for all user sessions) by a given percentage, the second rule classified the
user as “interested in details”. In this case the third rule (InclusionRule) includes additional
information about the project at the project homepage.

6.5 Implementation Issues

In order to efficiently “reuse” the functionality of the pipeline-based document generation
architecture introduced in Section 4.5, the GAC was implemented as one of its transformer

6Introduced by the AHAM reference model for adaptive hypermedia applications [De Bra et al. 1999], the
phase attribute is widely used in systems supporting adaptivity (see Section 2.2.5).

c© Copyright TU Dresden, Zoltán Fiala 155

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

1 <gac:UpdateRule rdf:ID="clickCounterRule">
2 <gac:do>$NumberOfClicks=$NumberOfClicks+1</gac:do>
3 <gac:phase>post</gac:phase>
4 </gac:UpdateRule>
5
6 <gac:UpdateRule rdf:ID="trackInterestRule">
7 <gac:hasCondition>
8 <gac:Condition gac:when="$NumberOfClicks>$AverageClicks*1.5"/>
9 </gac:hasCondition>

10 <gac:do>$InterestedInDetails=’yes’</gac:do>
11 <gac:phase>post</gac:phase>
12 </gac:UpdateRule>
13
14 <gac:InclusionRule rdf:ID="includeDetailsRule"
15 gac:selector="//div[@id=’project’]">
16 <gac:hasCondition>
17 <gac:Condition gac:when="$InterestedInDetails==’yes’"/>
18 </gac:hasCondition>
19 <gac:what>http://www.gac.org/AdditionalInformation/</gac:what>
20 </gac:InclusionRule>

Listing 6.10: Interplay of update rules and adaptation rules

modules. As illustrated in Figure 6.12, it can be used at arbitrary stages of the document
generation pipeline to perform adaptation transformations on its incoming XML-based input.
Each GAC transformer is configured by its RDF-based configuration document. Furthermore,
each of them has read and write access to its adaptation context data (ACD), which is a part
of the architecture’s context model. As shown in Figure 6.12, these parts are typically disjoint.
However, the current implementation allows the GACs to access arbitrary parameters from
the overall context model.

Since the document generation architecture is based on the publication framework Co-
coon, the GAC was developed as a custom Cocoon transformer [Ziegeler and Langham 2002]
written in Java. Inheriting from Cocoon’s AbstractDOMTransformer class, it performs the
corresponding data transformations on the JDOM [@jdom] view of its input XML documents.
In order to effectively realize adaptation and context data update rules, a Java class was im-
plemented for each rule type introduced in Section 6.4. The corresponding implementations
are optimized for performing the appropriate adaptation operations (elision, separation, in-
clusion, replacement, sorting, etc.) on the processed XML content.

At configuration time, the GAC processes its RDF-based configuration file and retrieves
all rule definitions contained in it. For each retrieved rule it instantiates the corresponding
Java rule class and sets its parameters, respectively. Sorted by their priority, the instantiated
rules are registered by the RuleManager , a Java object maintaining a dynamic array of rule
objects. This rule instantiation process is performed only once, i.e. at the time when the Web
application is initialized.

At run-time the GAC is triggered by receiving XML content from its preceding data trans-
formation components in the Cocoon pipeline. In this case the RuleManager is activated that
triggers its registered rules one after another. Utilizing the XPath API, each rule determines
the set of XML elements it is assigned to and evaluates whether the corresponding condi-
tions hold. If they hold, the corresponding data transformations or context data updates are
performed and the next rule object is invoked. After the last rule is triggered, the resulting
XML document is sent to the next processing step in the Cocoon pipeline.

156 c© Copyright TU Dresden, Zoltán Fiala

6.5. Implementation Issues

Document Generation Pipeline

Context Model

Context Modeling

Request

Transform

GAC 1

...

Profile
ACD 1

Update

ACD n

Transform

GAC n

Transform
XML
input

content

Adapted
Web
Page

conf. 1 conf. n

Figure 6.12: GAC implementation overview.

The context model (containing the GAC’s adaptation context data) was realized based on
Cocoon’s so-called authentication context. It allows to store session and context information
in form of arbitrary XML data structures that can be manipulated by DOM operations.
Furthermore, in a later version, another implementation of the ACD repository based on the
open source RDF database Sesame [Broekstra et al. 2002] was also realized . In this version
the GAC implementation utilizes SeRQL (Sesame RDF Query language) for retrieving or
updating this data. The usage of SeRQL allows for expressing more powerful queries (both
select and update operations) on the ACD, as well as the integration of heterogeneous context
data sources.

6.5.1 Running Example Implementation Configuration

While Figure 6.12 illustrated the general architecture of a GAC-based implementation, Fig-
ure 6.13 depicts the concrete GAC configuration of the running example used throughout this
chapter. The input documents of the document generation pipeline are Web pages delivered
in form of XHTML documents. They are subdued to two GAC transformers, each of which
realizes a certain adaptation concern. For the sake of simplicity, in this scenario both GACs
are configured to utilize the same adaptation context data repository.

Since the two GACs are switched immediately behind each other, note that it would be
also possible to use only one GAC that is configured by all adaptation and update rules.
Still, in order to support a better separation of concerns, the rules executed by each GAC
are grouped according to a certain adaptation aspect. The first GAC transformer performs
adaptation operations concerning device dependency. The second one performs all other
adaptations that deal with user-specific personalization issues. Note that a main advantage
of this separation of concerns with different GACs is the possibility to easily “plug-in” or
remove a certain adaptation aspect from the entire application. Furthermore, it also nicely

c© Copyright TU Dresden, Zoltán Fiala 157

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

Transform

GAC 1

Transform

GAC 2

original
XHTML

page

adapted
XHTML

Page

Adaptation

Concern 1:

device

dependency

Adaptation

Concern 2:

personali-

zation

Figure 6.13: Running example implementation configuration.

corresponds to the preferred strategy of a Web designer who tries to specify independent
application concerns (in this case adaptation issues) separately from each other. The usage
of an implementation based on a series of GACs enables to step-by-step incorporate all these
additional concerns into the original Web application at run-time.

Figure 6.14 depicts two screenshots from the “adapted versions” of the running example.
The first one (on the left) shows the project overview page as it is presented on a desktop
browser. Note that, according to the inclusion rule described in Listing 6.5, an “advertise-
ment” of the GAC was inserted on its bottom. It indicates that “Adaptation on this site
is powered by the GAC”. Furthermore, the list of project members was also dynamically
reorganized based on the user’s visits to their personal homepages. The second screenshot
(on the right) shows the Web page of a particular project member on a handheld device.
Based on the adaptation rules addressing device dependency, both the image of the project
member and the list of his publications was omitted.

6.5.2 Extensibility Issues

The GAC provides a repertoire of generic adaptation operations (rules) that are applicable on
arbitrary XML input. Nevertheless, in some cases a designer might require further (e.g. more
specific) adaptation rules in order to cope with a given transcoding scenario. The reason for
this could be the requirement to specifically target the characteristics of a given XML format
(or Web application) by the provision of a set of designated adaptation rules.

As a typical example we mention the well-known “table transform” [Hwang et al. 2003]
transcoding operation. It is used for displaying large XHTML tables on handhelds either by
unrolling them to a list, or by splitting them to a number of smaller tables (or subtables)
with a configurable number of columns and/or rows. These operations can be reduced to
a series of basic (generic) transformation operations (inclusion, omission, replacement, etc.).
Yet, a provider might need a designated rule for them in order to 1) have a more “high-
level” view on these operations or 2) to achieve a better performance by taking into account
the specific characteristics of the given XML format (in this case XHTML) and putting all
required functionality in one rule.

To realize such extensions two steps have to be performed. First, a new GAC adaptation
rule (and its possibly parameters) have to be specified in the GAC rule schema. Second,

158 c© Copyright TU Dresden, Zoltán Fiala

6.6. Conclusion and Discussion

Figure 6.14: Running example screenshots

the appropriate adaptation operations to be performed on the input XML content have
to be implemented. Since the extensible rule classes of the current GAC implementation
allow to utilize DOM operations on the input content, programmers can easily add arbitrary
functionality, either by programming it themselves or by importing existing DOM-based data
transformation implementations. Furthermore, we note that the DOM (JDOM) libraries used
for the GAC’s implementation also allow programmers to apply any arbitrary existing XSLT
stylesheet on the DOM tree of the actual document.

Besides adaptation rules, a Web developer using the GAC might also need further func-
tionality for updating the adaptation context data. While the current GAC update rules are
quite generic, we note that they are rather low-level and do not support for the expression
of more specific context modeling (e.g. self-learning) algorithms. Again, the use of a Java-
based implementation and the standardized CC/PP-based interface to the adaptation context
data allow to easily incorporate existing context modeling components into the GAC’s rule
repertory.

6.6 Conclusion and Discussion

This chapter introduced the GAC, a generic transcoding tool for making XML-based Web
applications adaptive. Based on the key observation that an Adaptive Web Information
System is typically realized as a series of transformations, it was shown how it can add
additional adaptation concerns to an existing Web application without the need to completely

c© Copyright TU Dresden, Zoltán Fiala 159

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

redesign it. First, an overview of the GAC’s main functionality was given, and a number of
its possible application scenarios were demonstrated. Then, an RDF-based rule language
for the specification of the GAC’s exact functionality was presented. The different kinds
of content adaptation and context data update rules were illustrated based on a running
example. Finally, a prototypical implementation (developed by the author of this thesis) for
realizing the GAC’s main functionality was presented.

As could be demonstrated, the current GAC architecture provides the necessary function-
ality to incorporate different kinds of adaptation into XML-based Web applications. Still, the
author is aware of the fact that, on top of this foundation, there is a need for concepts and
visual GAC configuration tools that would allow Web developers to specify such additional
adaptation concerns in a high-level systematic way. This issue of “GAC-based authoring”
was not a focus of this work and has thus not been sufficiently addressed, yet. We note,
however, that initial ideas in this direction will be discussed within the scope of future work
ideas presented in Section 7.3.

Nevertheless, an interesting aspect to be discussed here is the relation of the GAC to
the concern-oriented component model presented in Chapter 4. Even though the GAC was
inspired by the adaptation functionality of that model and its pipeline-based document gen-
eration architecture, note that it pursues a complementary approach. Whereas a Web pre-
sentation built of document components contains adaptation definitions from the beginning
in a component-based inherent way, in a Web transcoding scenario this adaptation is added
to the underlying application afterwards in a rule-based manner. As a matter of course, both
solutions have a number of advantages which mainly depend on the respective application
scenario. The rest of this section is dedicated to the discussion of these differences in more
detail.

Adaptation by Transcoding: Advantages

In general, the separate specification, storage, and implementation of “external” adaptation
rules has the following advantages.

Adaptation support without content reauthoring: The providers responsible for adap-
tation do not need to manipulate or reauthor the input content in order to prepare it
for adaptation. That is to say, XML documents from arbitrary content authors can be
taken as input. Furthermore, the provider of the transcoding solution does not need to
be granted write access to this original content.

Adaptation support for future Web applications: Adaptation rules may be specified
also for Web pages (or in more general for Web content) that have not been even
created, yet. As an example, a GAC configurator might create a rule dictating that all
images in any incoming XHTML document have to be elided for handheld devices. As
a matter of course, this rule is applicable for all kinds of dynamically created volatile
XHTML input, too.

Flexible adaptation reconfiguration: As a consequence of the former advantage, the
same input document can be used in different adaptation scenarios. It is merely the
configuration of the transcoder that has to be altered in order to change the current
adaptation policy. For instance, while a configuration C1 might be used to adjust
XHTML documents to mobile devices with small displays, another configuration C2
could be used to transcode them for users with visual impairments. Since the corre-
sponding adaptation specification are not intertwined with the content to be adapted,

160 c© Copyright TU Dresden, Zoltán Fiala

6.6. Conclusion and Discussion

it is easily possible to add new ones or remove existing ones without having to redesign
the original application. Furthermore, the possibility to switch several transcoders in
line also allows to easily change the order or priority of the applied adaptation con-
cerns. Thus, instead of using “fixed adaptations” that are “hard-wired” to the original
content, the configurator of the GAC can “adapt the adaptation” to the particularities
of the given transcoding scenario.

Independent application and adaptation evolution: Due to the separate storage of
transcoding rules from the original content, the introduction of a new GAC rule type
or the modification (or extension) of an existing one does not require to change all
corresponding input documents. Furthermore, a change to a given rule’s implementa-
tion (e.g. for the sake of performance enhancements) affects only the “inner life” of the
GAC, not necessitating to change the entire Web application to be adapted. That is to
say, the specification and implementation of adaptation rules may evolve independently
from the input documents.

Support for distributed adaptation operations: The flexible assignment of adaptation
rules to documents’ parts by XPath expressions allows to attach rules to multiple frag-
ments of a document. Thus, a single adaptation rule be used to adjust different parts
(components) of a Web page. This advantage is especially important because adaptation
concerns (e.g. the omission of high quality pictures for devices with low presentation ca-
pabilities) are typically not pinpointed to a specific element of the input content, rather
spread over several similar content elements (e.g. in this case all appropriate images)
in a Web application. Consequently, such an adaptation rule addressing a number of
content elements can be easily added, removed, or altered by changing only a small
part of the separately stored and managed adaptation configuration.

Adaptation by Transcoding: Limitations

On the other hand, an adaptation scenario based on a transcoding solution utilizing external
adaptation rules has also some limitations.

Adaptation by content filtering: The basic principle of the GAC is to perform context-
dependent transformations on an already existing content stream. Thus, the adaptation
operations supported by it are “restricted” to filtering and/or reorganizing this input
content, not supporting to easily add new content alternatives. Even though inclusion
rules allow to insert XML-fragments into the processed Web documents, the introduc-
tion of a new adaptation variant (e.g. a video representation of all products of an online
shop for users with high bandwidth connections) typically requires a more thorough
reengineering of an existing Web application.

Need for detailed knowledge of the input XML content: The efficiency of a trans-
coding solution significantly depends on how much the “configurator” of transcoding
rules knows about the input content. Generally, the more he is familiar with the struc-
ture (e.g. the underlying data model or schema) of the input documents, the more
powerful adaptations he can to express. Still, this configurator is often independent
from the author(s) of the original application. Furthermore, modern Web applications
are increasingly developed with high-level visual authoring tools that aim at hiding the
rather low-level XML notation of the the underlying engineering approach. On the
contrary, if a Web author (or designer) considers adaptation as an inherent issue of the

c© Copyright TU Dresden, Zoltán Fiala 161

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

Web application to be created from the beginning, an appropriate process model can
optimally support him.

Dependence on the semantic richness of the input content: Another important ques-
tion is at which stage of the overall data transformation process a transcoding tool can
be utilized. As stated above, its efficiency mainly depends on how well structured the
input data is, especially how much metadata it contains. Increasingly, modern Web In-
formation Systems utilize XML-based representations of the data they process. Starting
from a well annotated data structure, they perform a number of transformations leading
to a hypermedia presentation. Of course, if the data transformation pipeline cannot be
“cut up” and the transcoder can only operate on top of the final presentation, then its
adaptation capabilities are mostly restricted to presentation adaptation.

Dependence on the underlying architecture: As a consequence of the previous issue,
the applicability of the GAC also depends on the overall architecture of the underlying
Web application. That is to say, the question of where and how efficiently the GAC can
be used is significantly influenced by the modularity and extensibility of that architec-
ture. Furthermore, we mention that modern Web applications are typically developed
and maintained by complex engineering frameworks, application servers, content man-
agement systems, etc. As a matter of course, a possible GAC-based extension has to
be in “perfect harmony” with all these architecture components.

Low-level adaptation specification: The usage of a transcoding tool (e.g. the GAC) re-
quires a rather low-level specification of adaptation transformations in terms of adapta-
tion rules that operate on XML elements. Furthermore, since the GAC and its configu-
ration language are by definition independent of a given XML grammar or methodology,
it is also difficult to provide a generic graphical authoring tool for intuitively adding
adaptation to any existing Web application in a high-level manner. Consequently, such
a graphical tool has to be created separately (e.g. as an “add-on” or a “plug-in”) for
each specific authoring tool.

No inherent support for type safety: In principle, external transcoding rules can per-
form arbitrary transformations of the input content. Nevertheless, it might be the case
that different adaptations (such as the omitting of a content element or XML tag) lead
to invalid documents, i.e. to documents that already do not correspond to their original
data schema. This might lead to problems when the affected documents are processed
by further transformation steps, e.g. in order to be presented in a given output format.
On the other hand, a component model with built-in support for adaptation permits
only document transformations that assure type safety and validity.

Lacking support for component-based reuse: Separating adaptation rules from the un-
derlying application prevents the efficient reuse of adaptable implementation artefacts
in a component-wise, black-box-like manner. Reusing a part of the base application in
another composition scenario also implies to extract its corresponding adaptation recipe
from the original application’s adaptation configuration and to “transfer” it to the new
application’s adaptation configuration in a possibly modified way. Thus, the detached
management of application and adaptation code can lead to higher maintenance efforts.

Orphan adaptation rules: Since in a transcoding scenario the adaptation rules are fully
detached from the input content, they also have to be maintained separately. However,

162 c© Copyright TU Dresden, Zoltán Fiala

6.6. Conclusion and Discussion

this separate storage of external transcoding rules (e.g. GAC rules) might lead to incon-
sistency problems if changes to the structure of the input documents (i.e. the documents
to be adapted) are made. For instance, if the XPath expression used as the selector of
a given GAC rule addresses e.g. the second subelement of a given XML element, then
the inclusion of a new preceding sibling can lead to an unexpected transcoding effect.
Especially, such inconsistencies arise if the person modifying a Web application is not
familiar with its corresponding GAC-based adaptation configuration.

However, this problem can be reduced to the problem of so-called orphan annota-
tions [Brush et al. 2001] (i.e. external annotations that can no longer be attached to
a document because it was modified) known from Web annotation systems. While
not being a central issue of this work, we note that there have been several ap-
proaches proposed that address this problem by utilizing so-called robust annotation
positioning techniques. For more information on this topic the reader is referred to
[Brush et al. 2001, Abe and Hori 2003].

To sum up, the separation of adaptation from the original application provides for more
flexibility in terms of reconfiguration and evolution (adding, removing, or reordering adapta-
tion aspects, inventing new adaptation rules, etc.), and the possibility to define adaptation
conditions (operations) that are distributed over multiple content elements while using only
one adaptation rule. On the other hand, a solution based on adaptive document components
provides better reusability (in terms of adaptable content artefacts), consistency, validation
support, as well as the possibility to use dedicated high-level design and authoring tools.

We remark furthermore, that a combined usage of both approaches is also conceivable. It
is possible to design and implement an adaptive Web application based on reusable docu-
ment components and, if demanded, flexibly add additional and rather “volatile” adaptation
concerns (e.g. adaptations that are only needed in a specific deployment of the application)
to it based on one or more GACs. In this case the GACs mainly serve as “customizers” that
make the application runnable in a given scenario that was not foreseen at the time of its
original design. Thus, while a component-based approach provides for “fixed” adaptations,
GACs can be utilized for further “adapting these adaptations”. Note that the modularity of
the component-based document format’s (staged) document generation architecture allows
to plug-in GAC components at any arbitrary stage of the data transformation pipeline.

c© Copyright TU Dresden, Zoltán Fiala 163

Chapter 6. A Generic Transcoding Tool for Making Web Applications Adaptive

164 c© Copyright TU Dresden, Zoltán Fiala

Chapter 7

Conclusion and Future Work

“It is never a mistake to say good-bye.”1

This dissertation dealt with the design and development process of context-adaptive Web
applications. It reviewed the state of the art in the fields of adaptive hypermedia and Web
engineering, identified main shortcomings of existing solutions, and proposed a component-
based approach for engineering adaptive Web sites. For the systematic realization of adaptive
Web presentations from reusable components, a model-based authoring process was designed
and constructively validated based on a prototypically realized visual component authoring
tool, an automatic transformation facility for the model-driven generation of adaptive com-
ponent structures, as well as a number of example applications. Finally, it was shown how
the lessons learned from engineering component-based adaptive Web sites can be generalized
in order to add adaptation to existing (not component-based) Web applications.

This final chapter reflects on the results of this dissertation. First, Section 7.1 recapitulates
the work presented in the previous chapters. Then, Section 7.2 discusses the dissertation’s
main scientific contributions and achievements, but also mentions its limitations and bound-
aries. Finally, Section 7.3 presents possible directions of future work to be carried out on the
foundations of this thesis.

7.1 Summary of the Chapters and their Contributions

Chapter 1 - Introduction

Chapter 1 introduced the background and motivation of this work. It pointed out that
personalization and device independence are crucial issues of today’s Web development, but
also identified a number of problems and shortcomings regarding the design, development,
and delivery of such adaptive Web applications. The vision of the work, the main problems to
be solved, basic research theses, as well as the goals to be achieved were presented. Moreover,
a short outline of the dissertation and the structure of its chapters was given.

Chapter 2 - Adaptive Hypermedia and Web-based Systems

The goal of Chapter 2 was to provide necessary background information for the reader on
the field of adaptive hypermedia and Web-based applications. It stated main definitions
and described the most significant methods, techniques, and application areas of hypermedia
adaptation. Furthermore, the most important reference models aimed at identifying the

1Kurt Vonnegut, Jr.: The Books of Bokonon (from Cat’s Cradle, 1963)

165

Chapter 7. Conclusion and Future Work

most common features of adaptive hypermedia and Web applications were also summarized
in detail.

The bases of this chapter were fundamental works and existing surveys on the field of
hypermedia, adaptation, user modeling, and context-awareness. Its contribution is a com-
pact introduction to the field of adaptive and context-aware hypermedia systems and Web
applications.

Chapter 3 - Development of Adaptive Web Applications: State of the Art

After summarizing the fundamentals of adaptive hypermedia, Chapter 3 analyzed existing
approaches aimed at engineering adaptive Web applications. The focus of investigations was
on two different aspects: 1) component-based and document-centric approaches aimed at the
implementation of Web applications, 2) and model-based methodologies focusing on their
structured design and development. From both fields the most prominent approaches were
summarized. While examining related work, a special focus was put on the question of how
adaptation and personalization are supported.

The basis of this chapter was a thorough examination of the recent years’ scientific litera-
ture on adaptive hypermedia, Web engineering, and multimedia engineering. It pointed out
the importance of declarative, component- and document-centric approaches, yet identified
the lacking support for the efficient creation of adaptive multimedia Web presentations from
reusable and configurable implementation entities.

Chapter 4 - A Concern-Oriented Component Model for Adaptive Web Applica-
tions

Chapter 4 presented a concern-oriented component model for component-based adaptive Web
documents. First, basic requirements towards the model were discussed and the concept of
declarative document components was introduced. Then, a component-based format for
adaptive dynamic Web documents and its XML-based description language were presented.
The different abstraction levels of document components, their support for adaptation, as well
as the concept of document component templates are explained by examples. Furthermore, a
modular architecture for the on-the-fly publishing and adaptation of component-based Web
documents was described. Finally, the description of the model’s selected benefits rounded
off this chapter. The contributions of Chapter 4 are the:

• design of a component-oriented XML-based document model for dynamic adaptive Web
documents;

• compact introduction and overview of the model’s language constructs and its XML-
based description language.

The main research results of Chapter 4 were published in a number of international pub-
lications: [Fiala et al. 2003b, Fiala et al. 2003a, Fiala and Meissner 2003, Fiala et al. 2003c,
Hinz and Fiala 2005]

Chapter 5 - The Authoring Process and its Tool Support

After presenting the component-based document model, Chapter 5 dealt with the authoring
process of component-based adaptive Web applications and its tool support. It discussed dif-
ferent application scenarios, but put a main focus on the development of data-driven adaptive

166 c© Copyright TU Dresden, Zoltán Fiala

7.1. Summary of the Chapters and their Contributions

Web presentations from reusable document components. First, a possible structured devel-
opment process by adopting and extending the Hera design methodology to the context of
component-based Web engineering was presented. Second, the AMACONTBuilder, a modu-
lar authoring tool for the intuitive graphical authoring of component-based Web documents
was introduced. Selected editor plugins of the AMACONTBuilder were presented from the
point of view of component authors. Moreover, it was also shown how the overall process of
design and implementation can be even automated, by automatically generating a component-
based adaptive Web application from high-level design specifications in a model-driven way.
Finally, the different authoring approaches were discussed, and example applications were
described. The chapter’s contributions are the:

• adoption of a structured design methodology for the development process of component-
based adaptive Web applications;

• design and prototypical implementation of a visual authoring tool for component-based
adaptive Web applications;

• extension of the Hera methodology by design and RDF(S)-based formalization of an
adaptive presentation model;

• design and implementation of a solution for automatically translating high-level model
specifications (design artefacts) to a component-based implementation supporting dif-
ferent aspects of static and dynamic adaptation;

• validation of the different authoring approaches by the development of a number of
component-based adaptive Web applications.

The research results described in Chapter 5 were previously described in several pub-
lications: [Fiala et al. 2004a, Fiala et al. 2004b, Frasincar et al. 2004, Hinz and Fiala 2004,
Fiala et al. 2005]

Chapter 6 - A Generic Transcoding Tool for Making Web Applications Adaptive

While the combination of the component-based document format with a structured design
and authoring process provides an efficient framework for developing adaptive Web-based
systems, it assumes to develop adaptive Web applications from scratch. Therefore, Chapter 6
dealt with the research question of how the lessons learned from the preceding chapters can be
generalized for adding adaptation to a broader range of Web presentations. It was recognized
that adaptive Web applications can be reduced to a series of data transformations and that
major parts of the adaptation-specific transformations can be separated from the rest of the
applications. Thus, a flexible transcoding tool called the Generic Adaptation Component
(GAC) was introduced.

First, the GAC’s main architecture and most important application scenarios were de-
scribed. Then, its RDF-based configuration language was introduced in detail, allowing to
define both content adaptation and context data update rules. To prove the concept’s feasi-
bility, it was illustrated how GACs can be configured to add adaptation to an existing Web
application. As the contributions of Chapter 6 we mention the:

• design of mechanisms for separating adaptation-specific transformations from adaptive
Web applications;

c© Copyright TU Dresden, Zoltán Fiala 167

Chapter 7. Conclusion and Future Work

• design and implementation of the Generic Adaptation Component (GAC), a generic
Web transcoding component for making existing XML-based Web applications adapt-
able and adaptive;

• specification of an RDF-based declarative language for the application-independent
definition of adaptation and interaction processing rules;

• illustration of the GAC’s functionality based on a running example.

The Generic Adaptation Component and its application in different transcoding sce-
narios were published in a number of international publications: [Fiala and Houben 2005,
Houben et al. 2005, Casteleyn et al. 2006a, Casteleyn et al. 2006b].

7.2 Discussion

The research theses formulated in the introduction of the dissertation served as its main
guidelines and motivation. Nevertheless, note that some of them cannot be proven directly
and can thus be only evaluated as a result of extensive long-term studies. This work provides a
sound foundation for such investigations. On the other hand, the research goals derived from
those theses (see Section 1.2) can be concretely compared with the results of the dissertation.
As also described in the previous summary of chapters, those goals could be successfully
accomplished.

The main goal to develop adaptive Web applications from reusable, configurable, and
adaptable implementation artefacts was achieved by the design and development of a declar-
ative, document-centric component model. Its underlying XML-based description language
supports the definition of document components that encapsulate both separate applica-
tion aspects (content, structure, semantics, navigation, presentation) and their corresponding
adaptation issues on different abstraction levels. Consequently, its expressivity and reusability
goes far beyond the possibilities of conventional Web document formats. Based on a number
of examples, it could be shown that the component model is applicable for implementing the
most important hypermedia adaptation techniques. Furthermore, it was illustrated how doc-
ument components can be automatically transformed to traditional Web document formats,
adapted to the appropriate user and his usage context.

Second, the applicability of the proposed component model in the overall engineering pro-
cess of adaptive Web applications was also successfully demonstrated. Its combination with
the model-based Hera-AMACONT methodology provides significant research benefits: 1) the
thorough separation of concerns and the reuse of artefacts at both design and implementa-
tion, 2) the systematic consideration of different adaptation aspects at each development step,
and 3) the design-time support for presentation layer adaptation, an issue that has not been
sufficiently addressed by existing methodologies, previously. With the AMACONTBuilder a
flexible visual tool was introduced to facilitate different authoring scenarios independent of
any one specific methodology. Furthermore, the RDF(S)-based formalization of the Hera-
AMACONT presentation model enabled even the automatic, model-driven generation of a
component-based implementation. The main concepts and tools of the overall multi-stage
authoring and document generation process could be presented and thus be constructively
validated by a number of developed adaptive Web applications.

Finally, the research goal of extending existing XML-based Web applications with (addi-
tional) adaptation concerns was also achieved. Aided by the Generic Adaptation Component,
Web developers have the possibility to decouple selected adaptation operations from the rest

168 c© Copyright TU Dresden, Zoltán Fiala

7.2. Discussion

of a Web applications and thus to specify them at a later stage, i.e. after the Web site has
already been deployed. Furthermore, as this specification of adaptation is not intertwined
with the regular Web application, it allows easy re-use of adaptation configurations for differ-
ent Web sites. Again, the developed concepts could be demonstrated by an implementation
based on example applications.

7.2.1 Scientific Contributions

Section 7.1 already summarized the contribution of each chapter of the dissertation. As
mentioned there, the most important results were also published in a number of international
publications. The following list recapitulates the most important scientific contributions of
the overall work.

• Development of a novel, document-centric component model for context-adaptive Web
presentations with a rigorous separation of different application and adaptation con-
cerns on multiple component levels. Thereby, extensive use of XML standards for
the homogeneous description of component properties, composition, interlinking, and
adaptation.

• Design of a structured, model-based authoring process for component-based adaptive
Web applications. Therefore, adoption and extension of existing Web design methods
to the context of component-based Web engineering. Provision of design-time support
for presentation-layer adaptation in Web site modeling.

• Model-driven generation of a component-based implementation based on an RDF(S)-
based high-level Web design specification. Thus, automatic combination of the advan-
tages of model-based Web design methodologies (e.g. high-level specification, thorough
separation of concerns, etc.) with the benefits of component-based implementation
techniques (such as reusability, configurability, or self-adaptation).

• Provision of a mechanism for decoupling selected adaptation operations from the rest
of a Web application. Design of a declarative rule-based language for the application-
independent description of adaptation operations. Development of a generic tool for
the addition of (both static and dynamic) adaptation concerns to existing XML-based
Web applications.

7.2.2 Limitations and Boundaries

The following list summarizes limitations and boundaries of this dissertation. Some of these
limitations concern the proposed approach itself. However, there are also some issues, the
thorough elaboration of which would go beyond the time scope of the thesis, and thus should
be tackled in form of future work.

Limitations of the component-based document format: The adaptation facilities pro-
vided by the component-based document model cover the most important adaptation
techniques (see Section 4.6.4), yet assume the author to predefine all possible adap-
tation variants (for content, navigation, presentation) already at authoring time. A
more dynamic and transparent specification or automatic computation of adaptation
variants (e.g. based on rules or behavior constraints to be evaluated at run-time) are
not supported, as this was not the focus of this thesis.

c© Copyright TU Dresden, Zoltán Fiala 169

Chapter 7. Conclusion and Future Work

Limitations of the supported adaptations: The adaptation addressed in this work fo-
cuses mainly on personalization, i.e. the adjustment of Web applications to individual
users, their client devices, and context. Adaptation based on the behavior of all users
(e.g. by examining common browsing patterns over a longer time scale) are not sup-
ported yet, and would necessitate the introduction of a “global user model” and appro-
priate modeling mechanisms. Furthermore, the supported adaptations are considered
to be performed on the server, client-side adaptation possibilities (e.g. on top of the
emerging AJAX technology [Gamperl 2006]) should be investigated within the scope of
future work.

Limitations of the utilized context model: The CC/PP-based context model is per-
fectly suited for describing client capabilities and user preferences, but its flat two-level
hierarchy does not support for more complex model descriptions utilizing concept hi-
erarchies and/or relationships. In order to use more sophisticated user modeling mech-
anisms (e.g. based on semantic or probabilistic inferences), a more complex context
model and an appropriate manipulation language based on Semantic Web technologies
should be used.

Limitations of the presented Web engineering process: The Web engineering process
described in Chapter 5 covers the phases of designing and implementing component-
based adaptive Web applications. Yet, it does not consider important Web engineering
issues, such as the maintenance, continuous updating (i.e. content management), or test-
ing adaptive Web sites. These topics imply interesting research questions and should
thus be more thoroughly investigated within the scope of future work.

Limitations of the AMACONTBuilder: The editor modules of the AMACONTBuilder
support the most important steps of the authoring process, yet do not cover all facil-
ities provided by the component-based format, and should thus be further developed,
respectively.

Limitations of the example applications: The approach presented in this dissertation
was proven by a number of example applications (see Section 5.4.2). However, even the
largest example application (the Web Information System aimed presenting students’
works) is rather middle-scaled in comparison to today’s Web sites both in size and
the amount of its visitors. For a more thorough evaluation of the authoring process,
its tool support, and the run-time performance of the resulting applications further
experiments on larger-scaled Web applications would be needed.

Limitations of the GAC: Currently, the RDF-based adaptation and update rules config-
uring the Generic Adaptation Component have to be edited by hand. The creation
of a visual GAC configuration tool, the systematic authoring process of GAC-based
adaptation rules on top of an underlying Web application, as well as the automatic
generation of rules based on higher-level design specifications are not supported yet, as
this was not the focus of this work.

7.3 Future Work

The work presented in this thesis provides different possibilities for further work. Whereas
some of them concern straightforward extensions of the presented approach and its tool
support, there are also possibilities to combine the results of the thesis with other research

170 c© Copyright TU Dresden, Zoltán Fiala

7.3. Future Work

areas. As the most important and interesting issues (parts of which are already addressed by
ongoing work) the following can be mentioned:

Extensions to the Component-based Document Model

A possible extension of the component-based document model is the integration of additional
adaptation facilities (e.g. automatic pagination or link/component sorting) into its repertoire
of built-in language constructs. Furthermore, the support of streaming-based media content
on the level of media components and its adaptive delivery by the document generation ar-
chitecture should be also investigated. Finally, the development of transformation stylesheets
for converting component-based adaptive Web presentations to alternative multimedia and
print formats (such as SVG, Flash, MPEG-4, or PDF) or even fat-client user interfaces (e.g.
Java Swing) is also an interesting extension issue.

Extensions to the AMACONTBuilder

The AMACONTBuilder introduced in Section 5.2 offers a number of graphical editor mod-
ules to demonstrate the authoring process of component-based adaptive Web presentations.
Still, it does not lay claim to be a mature development environment covering all the facilities
provided by the document model. Especially, editor modules for the intuitive authoring of
adaptable interaction elements (e.g. form elements or other client-side interaction compo-
nents) and for the visual configuration of the different user and context modeling facilities
should be developed. Furthermore, tools aimed at the graphical specification of context mod-
els would be also desirable. Moreover, a thorough evaluation of the existing tools’ correctness
and usability by involving a number of test authors should be performed.

Furthermore, while the AMACONTBuilder is a graphical authoring tool oriented at the
specifics of the concern-oriented component model, there is a need for an integrated de-
velopment suit that covers all phases of the overall Web engineering process described in
Chapter 5 (also shown in Figure 5.21), as well as other Web engineerings tasks that were
not considered in this dissertation, such as requirement engineering, maintenance, or the test
of Web applications. The vision is a modular development suit that enables designers, de-
velopers, content creators, etc. to choose from a repertoir of modeling, implementation, and
content management tools that best fit the requirements of a given application. The basis
of such a development suit could be a plug-in-oriented framework (e.g. based on the OSGI
standard [OSG 2005]), allowing to integrate and combine different “tool components”.

Support for Collaborative, Interdisciplinary Web Authoring

Chapter 5 introduced the authoring process of adaptive Web applications from a Web en-
gineer’s (model designer or application developer) point of view. Still, the overall process
of designing, developing, maintaining, and evolving Web applications involves a number of
experts from different domains (Web developers, graphics and layout designers, usability ex-
perts, content editors, etc.), whose work should be appropriately supported and coordinated.

This interdisciplinary authoring approach requires facilities for defining different author
roles and the assignment of specific authoring workflows to those roles. First steps in
this direction have been already undertaken by a prediploma thesis supervised by the au-
thor [Niederhausen 2005b], aimed at the definition and conducted execution of self-defined
authoring workflows. Still, the interplay and coordination of different authoring roles should
be investigated more thoroughly within the scope of a larger development project.

c© Copyright TU Dresden, Zoltán Fiala 171

Chapter 7. Conclusion and Future Work

Support for Collaborative Adaptive Web Applications

An important characteristics of today’s World Wide Web is its evolution to a communi-
cation and cooperation medium. Web applications are increasingly used in collaborative
scenarios, supporting both asynchronous (e.g. Web annotations) and synchronous ways (e.g.
shared Web browsing) of communication2. As the participants of such collaborative scenar-
ios use typically different mobile devices, there is a need for a proper combination of Web
collaboration and Web adaptation techniques. Still, even though there exist a number of
Web collaboration solutions both from industry [Lin 2003, Ulbricht 2006] and the academic
field [Greenberg and Roseman 1996, Esenther 2002], there are only very few approaches (such
as [Han et al. 2000]) that explicitly address adaptation and device independence.

The combination of Web collaboration and Web adaptation techniques implies the inves-
tigation of a number of challenging research issues, among them the sharing and synchroniza-
tion of different user and context models between parallel Web sessions, the adaptation of
Web content to the varying interaction capabilities of cooperating mobile devices, multi-device
Web browsing, or even the device dependent visualization of group awareness in collaborative
Web sessions. Since the work presented in this thesis provides generic and reusable facilities
for developing adaptive Web applications, it appears to be ideal for combination with existing
Web collaboration techniques. We note that the industry project VCS (Virtual Consulting
Services [@VCSProject]) aims at adopting the research results of this thesis to the field of
ubiquitous personalized co-browsing.

Authoring Support for Adaptive Rich Media Web Applications

A main trend of today’s WWW is the emergence of so-called Rich Internet Applications
(RIAs [Duhl 2003]). RIAs (also often referred to as rich media applications) embed audio,
video, 3D, and other highly interactive multimedia content, and can be seen as the fusion
of the interactive and multimedia user interface functionality of desktop applications with
Web applications. Their development necessitates to combine methods and tools of both
the Web engineering and multimedia engineering [Bailey et al. 2001, Sauer and Engels 1999]
disciplines. Furthermore, the device independent delivery of RIAs makes adaptation (of
content, navigation, presentation, modality, interaction) to a crucial issue. Still, existing
work on adaptation engineering mainly focuses on traditional hypermedia and Web content,
there are only a few approaches (e.g. [Preciado et al. 2005, Bozzon et al. 2006]) addressing
the specifics of RIAs.

The flexibility of the component-based document format introduced in this thesis allows
for the easy integration of rich media elements into component-based adaptive Web appli-
cations. First steps in this research direction have been already undertaken by combining
its adaptation facilities with the component-based 3D user interface description language of
the CONTIGRA project in [Dachselt et al. 2006]. Furthermore, the genericity of the GAC
approach promises to easily address adaptation in a large number of XML-based Web appli-
cations including rich media content. For this purpose an appropriate extension of the GAC’s
rule-based adaptation configuration language appears to be a feasible solution.

2This evolution of the WWW to a “second generation” of collaborative services is also often denoted as
Web 2.0 [O’Reilly 2006].

172 c© Copyright TU Dresden, Zoltán Fiala

7.3. Future Work

Extensions to the Generic Adaptation Component

Chapter 6 introduced the GAC as a generic transcoding tool aimed at adding adaptation
to XML-based Web applications. While it illustrated its application in a number of server-
side transcoding scenarios, its utilization as a client-side component appears to be also an
interesting future research direction. A client-side GAC could act as a portable private
adaptation component providing a personalized view on Web applications for its users. As
possible use cases we mention the adaptive management of personal bookmarks and links, the
maintenance of users’ private comments (annotations) attached to Web page fragments, or
even the “portable” realization of a Web application’s adaptive presentation and adaptation
layer on a mobile device. For this purpose an intuitive, “easy-to-use” GAC configuration
user interface should be developed, allowing users to set it up for adjusting selected Web
applications to their personal preferences.

Another possible research issue is the development of a graphical GAC configuration mod-
ule that can be plugged into existing XML-based authoring tools to visually create GAC rules.
A promising approach seems to be the application of the so-called “transformation by ex-
ample” (or programming by demonstration) paradigm [Koyanagi et al. 2000], that enables
authors to visually define transformations on fragments of an exemplary XML document and
to generalize the resulting rules, so that they can be applied to other documents slightly dif-
ferent from the original one. A similar solution was already introduced in [Ono et al. 2002],
enabling to automatically generate XSLT stylesheets based on the WYSIWYG editing of
HTML documents. Its adoption for the automatic derivation (generation) of GAC transfor-
mation rules appears to be a straightforward solution.

Third, the specification and development of high-level, domain-specific GAC rules (as well
as corresponding authoring support) is also an interesting extension possibility. Even though
generally applicable to arbitrary XML content, note that the current GAC rules are rather
low-level, i.e. the usage of domain-specific extensions would provide adaptation engineers
a more high-level, application-dependent view on the given adaptation scenario. Such rules
could be either automatically mapped to one or more “original” GAC rules, or, for the sake of
better performance, provided with their own DOM-based implementation. A possible solution
would be to bundle domain-specific (language-specific) GAC rules to so-called GAC profiles
(e.g. HTML GAC profile, X3D GAC profile, etc.). Thus, developers of an adaptive Web
application could easily specify, implement, publish, and exchange predefined “adaptation
rule packages” dedicated to the current application domain.

Finally, the application of the GAC for model-level adaptations is also a possible research
issue. Even though it was originally developed to adjust XML document instances at the
level of hypermedia presentation generation, the trend to formalize (Web) design models in
XML (and to generate applications based on model transformations) allows to apply it even
for model adaptation. Thereby, a conceivable scenario is the combination of GACs both at
model-level and instance level. While the former ones could realize static adaptation (i.e.
adaptation that has to be performed only once and is thus executable at model level), the
latter could implement dynamic adaptation (i.e. adaptation that has to be performed for each
requested document instance separately).

Application of AOP Principles to Web Application Design

The GAC-based implementation architecture illustrated in Chapter 6 allows to easily incor-
porate additional (independent) adaptation concerns into a Web application. Still, whereas
the GAC supports powerful adaptation operations on XML input at instance level, the com-

c© Copyright TU Dresden, Zoltán Fiala 173

Chapter 7. Conclusion and Future Work

plexity of Web applications, and the typical distribution of adaptation throughout the ap-
plication, necessitates the high-level specification of such adaptations at design level. Cur-
rently, adaptation is in most design methods specified in the form of conditions that are
embedded (intertwined) in the relevant design models. Extending a design with a particular
context-dependency concern therefore requires that the designer embeds for the relevant de-
sign elements the new adaptation condition(s) that result in the desired context-dependency.
Though these conditions can occur at one specific place in the design (e.g. to remove a link
between two concrete pages), it more frequently happens that they cannot be pinpointed to
one particular element (e.g. to hide for privacy reasons all sensitive data) and need to be
applied at distributed places in the design (model) [Casteleyn et al. 2006a].

A similar observation was made in the programming community, when considering dif-
ferent design concerns of a software application: some concerns cannot be localized to a
particular class or module; instead they are inherently distributed over the whole applica-
tion. Such a concern is called a cross-cutting concern. To cleanly separate the programming
code addressing this concern from the regular application code, Aspect-Oriented Program-
ming [Kiczales et al. 1997] was introduced. An aspect captures the functionality of a cross-
cutting concern and can be applied at different parts of the application.

Therefore, a challenging research issue for future work is the application of principles of
Aspect-Oriented Programming to Web design, allowing to separate a given Web application
design from the specification of additional context-dependency design concerns. If one can
easily add such functionality, it becomes possible to cleanly separate additional design aspects
and describe them independently from the base application. Furthermore, by translating
high-level design aspect descriptions to appropriate GAC rules, it becomes also possible to au-
tomatically generate a component-based implementation. First steps towards the application
of aspect-oriented principles to Web design and their GAC-based implementation were already
successfully undertaken and published in [Casteleyn et al. 2006b, Casteleyn et al. 2006a].

174 c© Copyright TU Dresden, Zoltán Fiala

Bibliography

[Abdelnur et al. 1999] Alejandro Abdelnur, Elaine Chien, and Ste-
fan Hepper. JSR-000168 Portlet Specification (Final Release),
http://jcp.org/aboutJava/communityprocess/final/jsr168/, 5 May 1999.

[Abe and Hori 2003] Mari Abe and Masahiro Hori. Robust Pointing by XPath Language:
Authoring Support and Empirical Evaluation. In 2003 Symposium on Applications and
the Internet (SAINT 2003), Orlando, FL, January 2003.

[Abowd et al. 1999] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a Better Understanding of Context and Context-
Awareness. In First International Symposium on Handheld and Ubiquitous Computing
(HUC’99), Karlsruhe, Germany, September 27-29, pages 304–307. Springer LNCS 1707,
1999.

[Abrams and Helms 2002] Marc Abrams and Jim Helms. User Interface
Markup Language (UIML) Specification Draft Language Version 3.0. In
http://www.uiml.org/specs/docs/uiml30-revised-02-12-02.pdf, February 2002.

[@AHA] AHA! - Adaptive Hypermedia for All! - project homepage. http://aha.win.tue.nl/.
Date of access: 30th July 2006.

[Alam and Rahman 2003] Hassan Alam and Fuad Rahman. Web Document Manipulation
for Small Screen Devices: A Review. In Second International Workshop on Web Document
Analysis (WDA2003), Edinburgh, UK, 2003.

[Allamaraju and Brooks 2005] Subbu Allamaraju and Rex Brooks. Web Ser-
vices for Remote Portlets 1.0 Primer. OASIS Committee Draft 1.01,
http://www.oasis-open.org/committees/download.php/11177, 25 January 2005.

[@AMACONT] AMACONT research project homepage. http://www-mmt.inf.tu-
dresden.de/english/Projekte/AMACONT/. Date of access: 30th July 2006.

[Ardissono et al. 1999] Liliana Ardissono, Luca Console, and Ilaria Torre. On the Application
of Personalization Techniques to News Servers on the WWW. In AI*IA 99:Advances in
Artificial Intelligence, 6th Congress of the Italian Association for Artificial Intelligence,
Bologna, Italy, pages 261–272, 1999.

[Ardissono et al. 2002] Liliana Ardissono, Anna Goy, Giovanna Petrone, and Marino Segnan.
Personalization in business-to-customer interaction. Commun. ACM, 45(5):52–53, 2002.

[Aroyo et al. 2003] Lora Aroyo, Paul De Bra, and Geert-Jan Houben. Embedding Infor-
mation Retrieval in Adaptive Hypermedia: IR meets AHA! In AH2003: Workshop on
Adaptive Hypermedia and Adaptive Web-Based Systems, Budapest, Hungary, pages 63–76,
2003.

175

Bibliography

[Aroyo et al. 2005] Lora Aroyo, Lloyd Rutledge, Rogier Brussee, Paul De Bra, Peter Gorgels,
Natasha Stahs, and Mettina Veenstra. Personalized Presentation and Navigation of Cul-
tural Heritage Content. In IEEE International Conference on Multimedia and Expo (ICME
2005), Amsterdam, The Netherlands, pages 1589–1592, 2005.

[Asakawa and Takagi 2000] Chieko Asakawa and Hironobu Takagi. Annotation-based
Transcoding for Nonvisual Web Access. In 4th International ACM/SIGCAPH Confer-
ence on Assistive Technologies (ASSETS’00), Arlington, Virginia, pages 164–171, July
2000.

[Aßmann 2003] Uwe Aßmann. Invasive Software Composition. Springer-Verlag, 2003. ISBN:
3-540-44385-1.

[Aßmann 2005] Uwe Aßmann. Architectural Styles for Active Documents. Science of Com-
puter Programming, 56(1-2):79–98, 2005.

[Axelsson et al. 2004] Jonny Axelsson, Beth Epperson, Masayasu Ishikawa, Shane Mc-
Carron, Ann Navarro, and Steven Pemberton. XHTML 2.0. W3C Working Draft,
http://www.w3.org/TR/xhtml2/, July 2004.

[Bailey et al. 2001] B.P. Bailey, J.A. Konstan, and J.V. Carlis. DEMAIS: Designing Mul-
timedia Applications with Interactive Storyboards. In 9th International Conference on
Multimedia, Ottawa, Canada. ACM Press, 2001.

[Barber and Badre 1998] Wendy Barber and Albert Badre. Culturability: The Merging of
Culture and Usability. In 4th Conference on Human Factors and the Web, Basking Ridge,
New Jersey, USA, June 1998.

[Barrett and Maglio 1999] Rob Barrett and Paul P. Maglio. Intermediaries: An approach for
manipulating information streams. IBM Systems Journal, 38(4):629–641, 1999.

[Barrett et al. 1997] Rob Barrett, Paul P. Maglio, and Kellem Daniel C. How to Personalize
the Web. In ACM Conference on Human Factors in Computing Systems (CHI’97), Atlanta,
pages 75–82, 1997.

[Belotti et al. 2005] Rudi Belotti, Corsin Decurtins, Michael Grossniklaus, Moira C. Norrie,
and Alexios Palinginis. Interplay of Content and Context. Journal of Web Engineering,
4(1):57–78, 2005.

[Berglund et al. 2004] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez,
Michael Kay, Jonathan Robie, and Jerome Simeon. XML Path Language (XPath) 2.0.
W3C Working Draft, http://www.w3.org/TR/xslt20/, October 2004.

[Berners-Lee et al. 1992] Tim Berners-Lee, Robert Cailliau, Jean-François Groff, and Bernd
Pollermann. World-Wide Web: The Information Universe. Electronic Networking: Re-
search, Applications and Policy, 1(2):74–82, 1992.

[Berners-Lee et al. 2001] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic
Web. Scientific American, 2001(May), 2001.

[Bickmore et al. 1999] Timothy W. Bickmore, Andreas Girgensohn, and Joseph W. Sullivan.
Web Page Filtering and Reauthoring for Mobile Users. Computer Journal, 42(6):534–546,
1999.

176 c© Copyright TU Dresden, Zoltán Fiala

Bibliography

[Bos et al. 2006] Bert Bos, Tantek Çelik, Ian Hickson, and H̊akon Wium Lie. Cas-
cading Style Sheets, level 2 revision 1 CSS 2.1 Specification. W3C Working Draft,
http://www.w3.org/TR/CSS21/, 11 April 2006.

[Boyle and Encarnacion 1994] Craig Boyle and Antonio O. Encarnacion. Metadoc: An Adap-
tive Hypertext Reading System. User Modeling and User-Adapted Interaction, 4(1):1–19,
1994.

[Bozzon et al. 2006] Alessandro Bozzon, Piero Fraternali, Sara Comai, and Giovanni Toffetti
Carughi. Conceptual Modeling and Code Generation for Rich Internet Applications. In
6th International Conference on Web Engineering (ICWE2006), 2006.

[Brickley and Guha 2003] Dan Brickley and R.V. Guha. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. W3C Working Draft, http://www.w3.org/TR/rdf-schema/,
10 October 2003.

[Broekstra et al. 2002] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame:
A Generic Architecture for Storing and Querying RDF and RDF Schema. In International
Semantic Web Conference 2002, pages 54–68, 2002.

[Brush et al. 2001] A. J. Bernheim Brush, David Bargeron, Anoop Gupta, and Jonathan J.
Cadiz. Robust Annotation Positioning in Digital Documents. In SIGCHI Conference on
Human Factors in Computing Systems, pages 285–292. ACM Press, April 2001.

[Brusilovsky and Cooper 2002] Peter Brusilovsky and David W. Cooper. Domain, task, and
user models for an adaptive hypermedia performance support system. In International
Conference on Intelligent User Interfaces (IUI 2002), San Francisco, California, USA,
pages 23–30, 2002.

[Brusilovsky et al. 1996] Peter Brusilovsky, Elmar W. Schwarz, and Gerhard Weber. A tool
for developing adaptive electronic textbooks on WWW. In World Conference on Web
Society, WebNet’96, San Fransisco, CA, pages 64–69, 1996.

[Brusilovsky 1996] Peter Brusilovsky. Methods and Techniques of Adaptive Hypermedia.
User Modeling and User Adapted Interaction, 6(2-3):87–129, 1996.

[Brusilovsky 2001] Peter Brusilovsky. Adaptive Hypermedia. User Modeling and User
Adapted Interaction, 11(1-2):87–110, 2001.

[Brusilovsky 2004] Peter Brusilovsky. Adaptive Educational Hypermedia: From generation
to generation. In 4th Hellenic Conference on Information and Communication Technologies
in Education, Athens, Greece, pages 19–33, 2004.

[Bulterman et al. 2005] Dick Bulterman, Guido Grassel, Jack Jansen, Antti Koivisto,
Nabil Layaida, Thierry Michel, Sjoerd Mullender, and Daniel Zucker. Syn-
chronized Multimedia Integration Language (SMIL 2.1). W3C Recommendation,
http://www.w3.org/TR/SMIL2/, December 2005.

[Burke 2002] Robin Burke. Hybrid Recommender Systems: Survey and Experiments. User
Modeling and User Adapted Interaction, 12(4):331–370, 2002.

[Bush 1945] Vannevar Bush. As We May Think. The Atlantic Monthly, 176 (1):101–108,
1945.

c© Copyright TU Dresden, Zoltán Fiala 177

Bibliography

[Butler 2003] Mark H. Butler. DELI, an open-source CC/PP and UAProf servlet API. In
http://sourceforge.net/projects/delicon/, November 2003.

[Casteleyn and De Troyer 2002] Sven Casteleyn and Olga De Troyer. Exploiting Link Types
during the Web Site Design Process to Enhance Usability of Web Sites. In Second Inter-
national Workshop on Web-Oriented Software Technology (IWWOST 2002), 2002.

[Casteleyn et al. 2003] Sven Casteleyn, Olge De Troyer, and Saar Brockmans. Design Time
Support for Adaptive Behavior in Web Sites. In 18th ACM Symposium on Applied Com-
puting, pages 1222–1228. ACM Press, March 2003.

[Casteleyn et al. 2006a] Sven Casteleyn, Zoltán Fiala, Geert-Jan Houben, and Kees van der
Sluijs. Considering Additional Adaptation Concerns in the Design of Web Applications.
In Adaptive Hypermedia and Adaptive Web-Based Systems 2006 (AH2006). Springer, June
2006.

[Casteleyn et al. 2006b] Sven Casteleyn, Zoltán Fiala, Geert-Jan Houben, and Kees van der
Sluijs. From Adaptation Engineering Towards Aspect-Oriented Context-Dependency. In
Fifteenth International Conference on the World Wide Web (WWW2006), Poster session.
ACM, May 2006.

[Casteleyn 2005] Sven Casteleyn. Designer Specified Self Re-organizing Websites. PhD thesis,
Vrije Universiteit Brussel, September 2005.

[Ceri et al. 2000] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language
(WebML): a modeling language for designing Web sites. In 9th International Conference
on the World Wide Web (WWW9), Amsterdam, May 2000.

[Ceri et al. 1999] Stefano Ceri, Piero Fraternalie, and Stefano Paraboschi. Data-Driven One-
to-One Web Site Generation for Data Intensive Applications. In 25th International Con-
ference on Very Large Data Bases, pages 615–626. Morgan Kaufman, 1999.

[Ceri et al. 2003a] Stefano Ceri, Florian Daniel, and Maristella Matera. Extending WebML
for Modeling Multi-Channel Context-Aware Web Applications. In WISE - MMIS’03 Work-
shop (Mobile Multi-channel Information Systems), pages 225–233, 2003.

[Ceri et al. 2003b] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Co-
mai, and Maristella Matera. Designing Data-Intensive Web Applications. Morgan Kauf-
mann, 2003. ISBN: 1-558-60843-5.

[@CHAMELEON] CHAMELEON project homepage. http://www-mmt.inf.tu-
dresden.de/english/Projekte/CHAMELEON/. Date of access: 30th July 2006.

[Chen 1975] Peter Pin-Shan Chen. The entity-relationship model - toward a unified view of
data. ACM Transactions on Database Systems (TODS), 1(1):9–36, 1975.

[Chevchenko 2003] Elena Chevchenko. Entwicklung von Werkzeugmodulen für die Bear-
beitung von Kurskomponenten und -strukturen in TeachML-Dokumenten. Master’s thesis,
Technische Universität Dresden, 2003.

[Cheverst et al. 2000] Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday, and
Christos Efstratiou. Developing a Context-Aware Electronic Tourist Guide: Some Issues
and Experiences. In CHI 2000 Conference on Human Factors in Computing Systems, The
Hague, The Netherlands, pages 17–24, 2000.

178 c© Copyright TU Dresden, Zoltán Fiala

Bibliography

[Chisholm and Vanderheiden 1999] Wendy Chisholm and Gregg Vanderhei-
den. Web Content Accessibility Guidelines 1.0. W3C Recommendation,
http://www.w3.org/TR/WAI-WEBCONTENT, 5 May 1999.

[@Consensus] Consensus project homepage. http://www.consensus-online.org. Date of ac-
cess: 23th September 2006.

[Conallen 2000] Jim Conallen. Building Web Applications with UML. Addison-Wesley, 2000.
ISBN: 2-016-1577-0.

[Costagliola et al. 2002] Gennaro Costagliola, Filomena Ferrucci, and Rita Francese. Web
engineering: Models and methodologies for the design of hypermedia applications. Hand-
book of Software Engineering & Knowledge Engineering, Emerging Technologies, World
Scientific, pages 181–199, 2002.

[Cowan and de Lu 1995] Donald D. Cowan and Carlos José Pereira de Lu. Abstract Data
Views: An Interface Specification Concept to Enhance Design for Reuse. IEEE Transac-
tions on Software Engineering, 21(3):229–243, 1995.

[Cranor et al. 2002] Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-
Marshall, and Joseph Reagle. The Platform for Privacy Preferences 1.0 (P3P1.0) Specifi-
cation. W3C Recommendation, http://www.w3.org/TR/P3P/, 16 April 2002.

[Dachselt and Rukzio 2003] Raimund Dachselt and Enrico Rukzio. Behavior3D: an XML-
based framework for 3D graphics behavior. In Eighth International Conference on 3D Web
Technology,Web3D 2003, Saint Malo, France, pages 101–112, March 2003.

[Dachselt et al. 2002] Raimund Dachselt, Michael Hinz, and Klaus Meißner. CONTIGRA:
an XML-based architecture for component-oriented 3D applications. In 7th International
Conference on 3D Web Technology (Web3D 2002), pages 155–163, Februar 2002.

[Dachselt et al. 2006] Raimund Dachselt, Michael Hinz, and Stefan Pietschmann. Using the
Amacont Architecture for Flexible Adaptation of 3D Web Applications. In 11th Inter-
national Conference on 3D Web Technology (Web3D 2006), Columbia, Maryland, USA,
pages 75–84, April 2006.

[Dachselt 2004] Raimund Dachselt. Eine deklarative Komponentenarchitektur und Interak-
tionsbausteine für dreidimensionale multimediale Anwendungen. Dissertation. Der Andere
Verlag, 2004. ISBN: 3-89959-271-9.

[Dale et al. 1998] Robert Dale, Jon Oberlander, Maria Milosavljevic, and Alistair Knott.
Integrating natural language generation and hypertext to produce dynamic documents.
Interacting with Computers, 11(2):109–135, 1998.

[Dart 1999] Susan Dart. Change Management: Containing the Web Crisis. In ICS Workshop
on Web Engineering, 1999.

[Davis and Huttenlocher 1995] Jim Davis and Dan Huttenlocher. Conote Sys-
tem Overview. http://www.cs.cornell.edu/home/dph/annotation/annotations.html,
http://www.cs.cornell.edu/home/dph/annotation/annotations.html, December
1995.

[Dayal 1988] Umeshwar Dayal. Active Database management systems. In Third International
Conference on Data and Knowledge Bases, pages 150–169. Morgan Kaufmann, 1988.

c© Copyright TU Dresden, Zoltán Fiala 179

Bibliography

[Dı́az et al. 1995] Alicia Dı́az, Tomás Isakowitz, Vanesa Maiorana, and Gabriel Gilabert.
RMC: a tool to design WWW applications. In Fourth International World Wide Web
Conference (WWW4), 1995.

[De Bra and Ruiter 2001] Paul De Bra and J.P. Ruiter. AHA! Adaptive Hypermedia for All.
In WebNet2001, World Conference on the WWW and Internet, pages 262–268, October
2001.

[De Bra et al. 1999] Paul De Bra, Geert-Jan Houben, and Hongjing Wu. AHAM: A Dexter-
Based Reference Model for Adaptive Hypermedia. In 10th ACM Conference on Hypertext
and Hypermedia (HYPERTEXT ’99), Darmstadt, Germany, pages 147–156. ACM, Febru-
ary 1999.

[De Bra et al. 2002] Paul De Bra, Ad Aerts, David Smits, and Natalia Stash. AHA! Version
2.0, More Adaptation Flexibility for Authors. In AACE ELearn’2002 conference, pages
240–246, 2002.

[De Bra et al. 2004] Paul De Bra, Lora Aroyo, and Vadim Chepegin. The Next Big Thing:
Adaptive Web-based Systems. Journal of Digital Information, 5(1), 2004.

[De Troyer and Casteleyn 2004] Olga De Troyer and Sven Casteleyn. Designing Localized
Web Sites. In 5th International Conference on Web Information Systems Engineering
(WISE2004), Brisbane, Australia, pages 547–558, 2004.

[De Troyer 2001] Olga De Troyer. Audience-driven Web Design. In Information Modeling in
the New Millennium, pages 442–462. IDEA GroupPublishing, 2001.

[Denoue and Vignollet 2000] Laurent Denoue and Laurence Vignollet. An annotation tool
for Web browsers and its applications to information retrieval. In 6th Conference on
Content-Based Multimedia Information Access (RIAO2000), 2000.

[Denoue 1999] Laurent Denoue. Adding metadata to improve retrieval: Yet Another Web
Annotation System. Technical report, University of Savoie, 1999.

[DeRose et al. 2002] Steven DeRose, Ron Daniel, Paul Grosso, Eve Maler, Jonathan Marsh,
and Norman Walsh. XML Pointer Language (Xpointer). W3C Working Draft,
http://www.w3.org/TR/xptr/, August 2002.

[Deshpande et al. 2002] Yogesh Deshpande, San Murugesan, Athula Ginige, Steve Hansen,
Daniel Schwabe, Martin Gaedke, and Bebo White. Web Engineering. Journal of Web
Engineering, 1(1):3–17, 2002.

[Dey 2001] Anind K. Dey. Understanding and Using Context. Personal and Ubiquitous
Computing, 5(1):4–7, February 2001.

[Dolog et al. 2003] Peter Dolog, Rita Gavriloaie, Wolfgang Nejdl, and Jan Brase. Integrat-
ing Adaptive Hypermedia Techniques and Open RDF-based Environments. In Twelfth
International World Wide Web Conference (WWW2003), Alternate Paper Tracks, 2003.

[Dubinko 2004] Micah Dubinko. XForms Essentials. O’Reilly & Associates, 2004. ISBN:
0-596-00369-2.

[Duhl 2003] J. Duhl. Rich Internet Applications. In IDC white papers, http://www.idc.com,
2003.

180 c© Copyright TU Dresden, Zoltán Fiala

Bibliography

[Esenther 2002] Alan W. Esenther. Instant Co-Browsing: Lightweight Real-time Collab-
orative Web Browsing. In The Eleventh International World Wide Web Conference
(WWW2002), Honolulu, Hawaii, USA, 2002.

[Evers and Day 1997] Vanessa Evers and Donald L. Day. The Role of Culture in Interface
Acceptance. In IFIP TC13 Interantional Conference on Human-Computer Interaction
(INTERACT ’97), Sydney, Australia, pages 260–267, 1997.

[Fallside and Walmsley 2004] David C. Fallside and Priscilla Walmsley. XML
Schema Part 0: Primer Second Edition. W3C Recommendation,
http://www.w3.org/TR/xmlschema-0/, October 2004.

[Ferraiolo and Jackson 2003] Jon Ferraiolo and Dean Jackson. Scalable Vector Graphics
(SVG) 1.1 Specification. W3C Recommendation, http://www.w3.org/TR/SVG11/, Jan-
uary 2003.

[Fiala and Houben 2005] Zoltán Fiala and Geert-Jan Houben. A Generic Transcoding Tool
for Making Web Applications Adaptive. In The 17th Conference on Advanced Information
Systems Engineering (CAiSE’05), pages 15–20. FEUP, June 2005.

[Fiala and Meissner 2003] Zoltán Fiala and Klaus Meissner. Annotating Virtual Web Docu-
ments with DynamicMarks. In Workshop XML Technologien für das Semantic Web (XSW
2003), Berliner XML Tage, pages 67–77, October 2003.

[Fiala et al. 2003a] Zoltán Fiala, Michael Hinz, Klaus Meißner, and Frank Wehner. A
Component-based Approach for Adaptive Dynamic Web Documents. Journal of Web
Engineering, Rinton Press, 2(1&2):058–073, September 2003.

[Fiala et al. 2003b] Zoltán Fiala, Michael Hinz, Klaus Meissner, and Frank Wehner. A
Component-based Approach for Adaptive Dynamic Web Documents. In Twelfth Inter-
national Conference on the World Wide Web (WWW2003), Poster session. ACM, May
2003.

[Fiala et al. 2003c] Zoltán Fiala, Michael Hinz, and Frank Wehner. An XML-based Com-
ponent Architecture for Personalized Adaptive Web Applications. In Workshop Personal-
isierung mittels XML-Technologien, Berliner XML Tage, pages 370–378, October 2003.

[Fiala et al. 2004a] Zoltán Fiala, Flavius Frasincar, Michael Hinz, Geert-Jan Houben, Peter
Barna, and Klaus Meissner. Engineering the Presentation Layer of Adaptable Web Infor-
mation Systems. In Fourth International Conference on Web Engineering (ICWE2004),
Munich, pages 459–472. Springer LNCS 3140, July 2004.

[Fiala et al. 2004b] Zoltán Fiala, Michael Hinz, Geert-Jan Houben, and Flavius Frasincar.
Design and Implementation of Component-based Adaptive Web Presentations. In 19th
Symposium on Applied Computing (SAC2004), Nicosia, Cyprus, pages 1698–1704. ACM
Press, March 2004.

[Fiala et al. 2005] Zoltán Fiala, Michael Hinz, and Klaus Meissner. Developing Component-
based Adaptive Web Applications with the AMACONTBuilder. In 7th IEEE International
Symposium on Web Site Evolution (WSE2005), Budapest, Hungary, pages 39–45, Septem-
ber 2005.

[Fiala 2001] Zoltán Fiala. Web Content Management Systeme. Master’s thesis, Budapest
University of Technology and Technische Universität Dresden, June 2001.

c© Copyright TU Dresden, Zoltán Fiala 181

Bibliography

[Finin 1989] Timothy W. Finin. GUMS - A general user modeling shell. In User Modeling
and User Adapted Interaction, pages 411–430. Springer-Verlag, Berlin, 1989.

[Fink et al. 1998] Josef Fink, Alfred Kobsa, and Andreas Nill. Adaptable and adaptive in-
formation provision for all users, including disabled and elderly people. The New Review
of Hypermedia and Multimedia, 16(4):163–188, 1998.

[Francisco-Revilla and Shipman 2000] Luis Francisco-Revilla and Frank M. Shipman. Adap-
tive medical information delivery combining user, task and situation models. In 2000
International Conference on Intelligent User Interfaces (IUI2000), New Orleans, USA,
pages 94–97, 2000.

[Frasincar et al. 2001] Flavius Frasincar, Geert-Jan Houben, and Richard Vdovjak. An
RMM-based methodology for hypermedia presentation design. In Advances in Databases
and Information Systems, 5th East European Conference, ADBIS 2001, Vilnius, Lithuania,
pages 323–337, September 2001.

[Frasincar et al. 2002] Flavius Frasincar, Geert-Jan Houben, and Richard Vdovjak. Specifi-
cation Framework for Engineering Adaptive Web Applications. In WWW11, The Eleventh
International Conference on the World Wide Web, 2002.

[Frasincar et al. 2004] Flavius Frasincar, Geert-Jan Houben, Peter Barna, and Zoltán Fiala.
Adaptation and Reuse in Web Information Systems. In ITCC2004, International Confer-
ence on Information Technology, pages 387–291. IEEE Computer Society, April 2004.

[Frasincar et al. 2005] Flavius Frasincar, Geert-Jan Houben, and Peter Barna. Hera Presen-
tation Generator. In 14th International Conference on the World Wide Web (WWW2005),
Poster Session, pages 952–953, May 2005.

[Frasincar 2005] Flavius Frasincar. Hypermedia Presentation Generation for Semantic Web
Information Systems. PhD thesis, Technische Universiteit Eindhoven, June 2005.

[Fraternali 1999] Piero Fraternali. Tools and Approaches for Developing Data-Intensive Web
Applications: A Survey. ACM Comput. Surv., 31(3):227–263, 1999.

[Fu et al. 2000] Xiaobin Fu, Jay Budzik, and Kristian J. Hammond. Mining Navigation His-
tory for Recommendation. In 2000 International Conference on Intelligent User Interfaces,
New Orleans, LA, pages 106–112, 2000.

[Furuta and Stotts 1989] Richard Furuta and P. David Stotts. Separating Hypertext Content
from Structure in Trellis. In UK Hypertext, pages 205–213, 1989.

[Gaedke et al. 2000] Martin Gaedke, Christian Segor, and Hans-Werner Gellersen. WCML:
Paving the Way for Reuse in Object-Oriented Web Engineering. In ACM Symposium on
Applied Computing (SAC2000), pages 748–755, March 2000.

[Gaedke et al. 2003] Martin Gaedke, Martin Nussbaumer, Oliver Jung, and Markus Dieck-
mann. Implementierungstechnologien für Web-Anwendungen. In Web Engineering: Sys-
tematische Entwicklung von Web-Anwendungen, pages 133–160. 2003.

[Gamperl 2006] Johannes Gamperl. Ajax - Web 2.0 in der Praxis. Galileo Computing, 2006.
ISBN: 3-89842-764-1.

182 c© Copyright TU Dresden, Zoltán Fiala

Bibliography

[Garzotto et al. 1993] Franca Garzotto, Paolo Paolini, and Daniel Schwabe. HDM - A model-
based approach to hypermedia application design. ACM Transactions on Information
Systems, 11(1):1–26, 1993.

[Gellersen et al. 1997] Hans-Werner Gellersen, Robert Wicke, and Martin Gaedke. WebCom-
position: an object-oriented support for system for the Web engineering lifecycle. Computer
Networks and ISDN Systems, 29(8-13):1429–1437, 1997.

[Ghanem and Aref 2004] Thanaa M. Ghanem and Walid G. Aref. Databases Deepen the
Web. IEEE Computer, 37(1):116–117, 2004.

[Gomes et al. 2001] Pedro Gomes, Sergio Tostao, Daniel Goncalves, and Joaquim Jorge. Web
Clipping: Compression Heuristics for Displaying Text on a PDA. In MobileHCI’01, Lille,
France, 2001.

[Gómez et al. 2001] Jaime Gómez, Cristina Cachero, and Oscar Pastor. Conceptual Model-
ing of Device-Independent Web Applications. In IEEE Multimedia Special Issue on Web
Engineering, pages 26–39. IEEE Computer Society Press, 2001.

[Goodman 1987] Danny Goodman. The Complete HyperCard Handbook. Bantam Books,
1987. ISBN: 0-966-55142-7.

[Graef and Gaedke 2000] Guntram Graef and Martin Gaedke. Construction of Adaptive
Web-Applications from Reusable Components. In First International Conference on Elec-
tronic Commerce and Web Technologies (EC-Web 2000), pages 1–12, September 2000.

[Greenberg and Roseman 1996] Saul Greenberg and Mark Roseman. GroupWeb: a WWW
browser as real time groupware. In ACM SIGCHI’96 Conference on Human Factors in
Computing System, Vancouver, Canada, pages 271–272. ACM Press, 1996.

[Grønbæk and Trigg 1996] Kaj Grønbæk and Randall H. Trigg. Towards a Dexter-based
Model for Open Hypermedia: Unifying embedded references and link objects, 1996.

[Grønbæk et al. 1999] Kaj Grønbæk, Lennert Sloth, and Peter Ørbæk. Webvise: Browser and
Proxy Support for Open Hypermedia Structuring Mechanisms on the WWW. Computer
Networks, 31(11-16):1331–1345, 1999.

[Grünbacher 2003] Paul Grünbacher. Requirements Engineering für Web-Anwendungen. In
Web Engineering: Systematische Entwicklung von Web-Anwendungen, pages 29–48. 2003.

[Gupta et al. 2003] Suhit Gupta, Gail Kaiser, David Neistadt, and Peter Grimm. DOM-
based Content Extraction of HTML Documents. In Twelfth International Conference on
the World Wide Web (WWW2003), Budapest, Hungary, pages 207–214. ACM Press, May
2003.

[Halasz and Schwartz 1994] Frank G. Halasz and Mayer D. Schwartz. The Dexter Hypertext
Reference Model. Communications of the ACM, 37(2):30–39, 1994.

[Halasz 1987] Frank G. Halasz. Reflections on NoteCards: Seven Issues for the Next Gener-
ation of Hypermedia Systems. In ACM Hypertext ’87 Conference, pages 345–365, 1987.

[Halpin 2001] Terry A. Halpin. Information Modeling and Relational Databases. Morgan
Kaufmann Publishers, 2001. ISBN: 1-55860-672-6.

c© Copyright TU Dresden, Zoltán Fiala 183

Bibliography

[Han et al. 2000] Richard Han, Veronique Perret, and Mahmoud Naghshineh. WebSplitter:
A Unified XML Framework for Multi-Device Collaborative Web Browsing. In ACM 2000
Conference on Computer Supported Cooperative Work (CSCW’00), Philadelphia, PA.,
pages 221–230, 2000.

[Hardman et al. 1994] Lynda Hardman, Dick C.A. Bulterman, and Guido van Rossum. The
Amsterdam hypermedia model: adding time and context to the Dexter model. Communi-
cations of the ACM, 37(2):50–62, 1994.

[Hendrickx et al. 2005] Filip Hendrickx, Tom Beckers, Nico Oorts, and Rik Van De Walle.
An Integrated Approach for Device Independent Publication of Complex Multimedia Doc-
uments. In IMSA2005, 2005.

[Henze and Nejdl 2001] Nicola Henze and Wolfgang Nejdl. Adaptation in open corpus hyper-
media. International Journal of Artificial Intelligence in Education, 12(4):325–351, 2001.

[Hepper 2004] Stefan Hepper. The Java Portlet Specification (Die Java Portlet Spezifikation).
it - Information Technology, 46(5):233–244, 2004.

[@HERA] The Hera software project. http://wwwis.win.tue.nl/˜hera/. Date of access: 30th
July 2006.

[Hicks and Tochtermann 2001] David L. Hicks and Klaus Tochtermann. Personal Digital
Libraries and Knowledge Management. Journal of Universal Computer Science (JUCS),
7(7):550–565, 2001.

[Hinz and Fiala 2004] Michael Hinz and Zoltán Fiala. AMACONT: A System Architecture
for Adaptive Multimedia Web Applications. In Workshop XML Technologien für das Se-
mantic Web (XSW 2004), Berliner XML Tage, October 2004.

[Hinz and Fiala 2005] Michael Hinz and Zoltán Fiala. Context Modeling for Device- and
Location-Aware Mobile Web Applications. In 3rd International Conference on Pervasive
Computing (Pervasive 2005), Workshop: PERMID 2005, München, pages 204–215, May
8-13 2005.

[Hinz et al. 2004] Michael Hinz, Zoltán Fiala, and Frank Wehner. Personalization-Based
Optimization of Web Interfaces for Mobile Devices. In 6th International Symposium on
Mobile Human-Computer Interaction - Mobile HCI 2004, Glasgow, UK, pages 204–215.
Springer LNCS 3160, September 13-16 2004.

[Hinz et al. 2006] Michael Hinz, Stefan Pietschmann, and Zoltán Fiala. A Framework for
Context Modeling in Adaptive Web Applications. In IADIS International Conference
WWW/Internet 2006, Murcia Spain, October 2006.

[Hoffmann and Dachselt 2003] Heiko Hoffmann and Raimund Dachselt. An Independent
Declarative 3D Audio Format on the Basis of XML. In 2003 International Conference
on Auditory Display, Boston, MA, USA, July 2003.

[Hohl et al. 1996] Hubertus Hohl, Heinz-Dieter Böcker, and Rul Gunzenhäuser. Hypadapter:
An Adaptive Hypertext System for Exploratory Learning and Programming. User Model-
ing and User-Adapted Interaction, 6(2-3):131–156, 1996.

184 c© Copyright TU Dresden, Zoltán Fiala

Bibliography

[Hoja 2005] Mark Hoja. Integration von Interaktionselementen in komponentenbasierte
adaptive Web-Anwendungen. Prediploma thesis, Technische Universität Dresden, April
2005.

[Hölldobler 2001] Tanja Hölldobler. Temporäre Benutzermodellierung für multimediale
Produkt-präsentationen im World Wide Web. Peter Lang, 2001. ISBN: 3-631-38343-6.

[Hori et al. 2000] Masahiro Hori, Goh Kondoh, Kouichi Ono, Shin-Ichi Hirose, and Sandeep
Singhal. Annotation-Based Web Content Transcoding. In 9th International World Wide
Web Conference, Amsterdam, The Netherlands, 2000.

[Hori et al. 2002] Masahiro Hori, Kouichi Ono, Teruo Koyanagi, and Mari Abe. Annotation
by Transformation for the Automatic Generation of Content Customization Metadata. In
International Conference on Pervasive Computing, Pervasive 2002, Zurich, Switzerland,
pages 267–281, 2002.

[Hothi and Hall 1998] Jatinder Hothi and Wendy Hall. An Evaluation of Adapted Hyper-
media Techniques Using Static User Modelling. In Second Adaptive Hypertext and Hyper-
media Workshop at the Ninth ACM International Hypertext Conference (Hypertext’98),
Pittsburgh, PA, pages 45–50, 1998.

[Houben et al. 2005] Geert-Jan Houben, Zoltán Fiala, Kees ven der Sluijs, and Michael
Hinz. Building Self-managing Web Information Systems from Reusable Components. In
First International Workshop on Adaptive and Self-Managing Enterprise Applications (AS-
MEA’05), pages 53–67. FEUP, June 2005.

[Houben 2004] Geert-Jan Houben. Challenges in Adaptive Web Information Systems: Don’t
Forget the Link! In ICWE Workshops, pages 3–11, 2004.

[Huang and Sundaresan 2000] Anita W. Huang and Neel Sundaresan. A Semantic Transcod-
ing System to Adapt Web Services for Users with Disabilities. In 4th International
ACM/SIGCAPH Conference on Assistive Technologies (ASSETS’00), Arlington, Virginia,
pages 156–163, 2000.

[Hwang et al. 2002] Yonghyun Hwang, Eunkyong Seo, and Jihong Kim. WebAlchemist: A
Structure-Aware Web Transcoding System for Mobile Devices. In Mobile Search Workshop,
Honolulu, Hawaii, 2002.

[Hwang et al. 2003] Yonghyun Hwang, Jihong Kim, and Eunkyong Seo. Structure-Aware
Web Transcoding for Mobile Devices. IEEE Internet Computing, 7(5):14–21, 2003.

[@ICWE2004Demo] Adaptive Painting Gallery prototype. http://www-mmt.inf.tu-
dresden.de/fiala. Date of access: 30th July 2006.

[@ImageMagick] ImageMagick project homepage. http://www.imagemagick.org/. Date of
access: 30th July 2006.

[@imarkup] iMarkup product homepage. http://www.imarkup.com/. Date of access: 30th
July 2006.

[Isakowitz et al. 1995] Tomás Isakowitz, Edward A. Stohr, and P. Balasubramanian. RMM:
A Methodology for Structured Hypermedia Design. Communications of the ACM,
38(8):34–44, 1995.

c© Copyright TU Dresden, Zoltán Fiala 185

Bibliography

[Isakowitz et al. 1998] Tomás Isakowitz, Michael Bieber, and Fabio Vitali. Web Information
Systems - Introduction. Communications of the ACM, 41(7):78–80, 1998.

[ISO 2002] ISO/IEC FDIS 21000-2. MPEG-21 - Part 2: Digital Item Declaration,
http://www.chiariglione.org/mpeg/standards/mpeg-21/mpeg-21.htm, 2002.

[Jacyntho et al. 2002] Mark D. Jacyntho, Daniel Schwabe, and Gustavo Rossi. A Software
Architecture for Structuring Complex Web Applications. Journal of Web Engineering,
Rinton Press, 1(1):037–060, 2002.

[@jdom] JDOM Java Document Model project homepage. http://www.jdom.org/. Date of
access: 30th July 2006.

[Jin et al. 2001] Yuhui Jin, Stefan Decker, and Gio Wiederhold. OntoWebber: Model-Driven
Ontology-Based Web Site Management. In The first Semantic Web Working Symposium
(SWWS’01), Stanford University, California, USA, pages 529–547, 2001.

[Jörding 1999] Tanja Jörding. Temporary User Modeling for Adaptive Product Presenta-
tions in the Web. In Seventh International Conference on User Modeling (UM99), Banff,
Canada, June 1999.

[Kappel et al. 2004] Gerti Kappel, Birgit Pröll, Siegfried Reich, and Werner Retschitzeg-
ger, editors. Web Engineering - Systematische Entwicklung von Web-Anwendungen.
dpunkt.verlag GmbH, 2004. ISBN: 3-898-64234-8.

[Kappel et al. 2006] Gerti Kappel, Birgit Pröll, Siegfried Reich, and Werner Retschitzegger,
editors. Web Engineering. The Discipline of Systematic Development of Web Applications.
John Wiley and Sons Ltd., 2006. ISBN: 0-470-01554-3.

[Kay 2004] Michael Kay. XSL Transformations (XSLT) Version 2.0. W3C Working Draft,
http://www.w3.org/TR/xslt20/, November 2004.

[Kiczales et al. 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Pro-
gramming. In 11th European Conference on Object Oriented Programming (ECOOP’97),
Jyväskylä, Finland, pages 220–242, 1997.

[Klapsing and Neumann 2000] Reinhold Klapsing and Gustaf Neumann. Applying the Re-
source Description Framework to Web Engineering. In First International Conference on
Electronic Commerce and Web Technologies (ECWeb 2000), pages 229–238, 2000.

[Klyne et al. 2003] Graham Klyne, Franklin Reynolds, Chris Woodrow, Hidetaka Ohto,
Johan Hjelm, Mark H. Butler, and Luu Tran. Composite Capability/Pref-
erence Profiles (CC/PP): Structure and Vocabularies. W3C Working Draft,
http://www.w3.org/TR/CCPP-struct-vocab/, 2003.

[Kobsa et al. 2001] Alfred Kobsa, Jürgen Koenemann, and Wolfgang Pohl. Personalised hy-
permedia presentation techniques for improving online customer relationships. The Knowl-
edge Engineering Review, 16(2):111–155, 2001.

[Koch and Wirsing 2002] Nora Koch and Martin Wirsing. The Munich Reference Model
for Adaptive Hypermedia Applications. In Second International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems (AH2002), pages 213–222, 2002.

186 c© Copyright TU Dresden, Zoltán Fiala

Bibliography

[Koch et al. 2001] Nora Koch, Andreas Kraus, and Ralf Hennicker. The Authoring Process
of the UML-based Web Engineering Approach. In First International Workshop on Web-
Oriented Software Technology (IWWOST2001), 2001.

[Koch 2001] Nora Koch. Software Engineering for Adaptive Hypermedia Systems: Reference
Model, Modeling Techniques and Development Process. PhD thesis, Ludwig-Maximilians-
Universität München, 2001.

[Koyanagi et al. 2000] Teruo Koyanagi, Kouichi Ono, and Masahiro Hori. Demonstrational
interface for XSLT stylesheet generation. Markup Languages: Theory and Practice,
2(2):133–152, 2000.

[@kpss05] Komplexpraktikum Multimediatechnik I - Adaptive Webseiten zur Präsentation
multimedialer studentischer Arbeiten des Studiengangs Medieninformatik. http://www-
mmt.inf.tu-dresden.de/kp ss05/. Date of access: 30th July 2006.

[Küpper 2005] Axel Küpper. Location-based Services: Fundamentals and Operation. John
Wiley & Sons Ltd., 2005. ISBN: 0-470-09231-9.

[Lam 2001] Wing Lam. Testing E-Commerce Systems: A Practical Guide. IT Professional,
3(2):19–27, 2001.

[Lei et al. 2005] Yuangui Lei, Enrico Motta, and John Domingue. OntoWeaver: an Ontology-
based Approach to the Design of Data-intensive Web Sites. Journal of Web Engineering,
4(3):244–262, 2005.

[Lie 2005] H̊akon Wium Lie. Cascading Style Sheets. PhD thesis, University of Oslo, Faculty
of Mathematics and Natural Sciences, 2005.

[Lin 2003] J.K. Lin. An Insider’s Guide to Today’s Cobrowsing. In Whitepaper of PageShare
Technologies, Inc., 2003.

[Linden et al. 2003] Greg Linden, Brent Smith, and Jeremy York. Amazon.com Recom-
mendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing, 7(1):76–80,
2003.

[Lowe 2003] David Lowe. Web system requirements: an overview. Requirements Engineering,
8(2):102–113, 2003.

[Lyman et al. 2003] Peter Lyman, Hal R. Varian, Kirsten Swearingen, Pe-
ter Charles, Nathan Good, Laheem Lamar Jordan, and Joyojeet Pal.
How much information? 2003 Executive Summary. School of Informa-
tion Management and Systems at the University of California at Berkeley,
http://www.sims.berkeley.edu/research/projects/how-much-info-2003/,
2003.

[Maedche et al. 2003] Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer,
and York Sure. SEmantic portAL: The SEAL Approach. In Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential [outcome of a Dagstuhl seminar], pages
317–359, 2003.

[Manjunath et al. 2002] B.S. Manjunath, Philippe Salembier, and Thomas Sikora. Introduc-
tion to MPEG-7. John Wiley & Sons, 2002. ISBN: 0-471-48678-7.

c© Copyright TU Dresden, Zoltán Fiala 187

Bibliography

[Marinilli et al. 1999] Mauro Marinilli, Alessandro Micarelli, and Filippo Sciarrone. A Case-
based Approach to Adaptive Information Filtering for the WWW. In Second Workshop
on Adaptive Systems and User Modeling on the World Wide Web, Toronto and Banff,
Canada, pages 81–87, 1999.

[Meißner et al. 2001] Klaus Meißner, Simone Röttger, and Frank Wehner. Dynamische Vi-
sualisierung modularer, XML-basierter Kursdokumente. In 11. Arbeitstreffen der GI-
Fachgruppe 1.1.5/7.0.1 ’Intelligente Lehr-/Lernsysteme’, Dortmund, Germany, 2001.

[Milosavljevic 1997] Maria Milosavljevic. Augmenting the User’s Knowledge via Comparison.
In Sixth International Conference on User Modeling (UM97), Vienna, New York, pages
119–130. Springer Wien New York, 1997.

[Müller et al. 2005] Christof Müller, Katharina Kiegler, Simon Biemer, Moritz Weeger,
Martin Schmal, Henri Holjewilken, Carsten Judick, Kerstin Werner, Matthias Nieder-
hausen, and Clark Helwig. Werkzeuge zur Erstellung adaptiver komponentenhafter Web-
Anwendungen. Dokumentation des Komplexpraktikums I. KP WS0304, TU Dresden,
Lehrstuhl Multimediatechnik, 2005.

[Murugesan and Deshpande 2001] San Murugesan and Yogesh Deshpande, editors. Web
Engineering - Managing the Diversity and Complexity of Web Application Development.
Springer Verlag, LNCS Vol. 2016, 2001. ISBN: 3-540-42130-0.

[Murugesan et al. 2001] San Murugesan, Yogesh Deshpande, Steve Hansen, and Athula
Ginige. Web Engineering: A New Discipline for Development of Web-Based Systems. In
Web Engineering, Software Engineering and Web Application Development, pages 3–13.
Springer Verlag, LNCS Vol. 2016, 2001.

[Nelson 1965] Theodor Holm Nelson. A File Structure for The Complex, The Changing and
the Indeterminate. 20th National Conference of the Association for Computing Machinery,
pages 84–100, 1965.

[Nelson 1987] Theodor H. Nelson. All for One and One for All. In ACM Hypertext’87
Conference, Chapel Hill, North Carolina, USA, 1987.

[Niederhausen 2005a] Matthias Niederhausen. Erstellung eines Adaptation Editors. AMA-
CONTBuilder Documentation, TU Dresden, Lehrstuhl Multimediatechnik, 2005.

[Niederhausen 2005b] Matthias Niederhausen. Realisierung komplexer Arbeitsabläufe
in einem Autorenwerkzeug für komponentenbasierte adaptive Web-Anwendungen.
Prediploma thesis, Technische Universität Dresden, November 2005.

[Niederhausen 2006] Matthias Niederhausen. Konzeption und Realisierung eines Hyperlink-
Editors für den AMACONTBuilder. Master’s thesis, Technische Universität Dresden, May
2006.

[Nielsen 1995] Jakob Nielsen. Multimedia and Hypertext: The Internet and Beyond. Morgan
Kaufmann, 1995. ISBN: 0-125-18408-5.

[Nielsen 2002] Jakob Nielsen. Kids’ corner: Website usability for children. Jakob Nielsen’s
Alertbox at Useit.com., http://www.useit.com/alertbox/20020414.html, April 14,
2002.

188 c© Copyright TU Dresden, Zoltán Fiala

Bibliography

[Oberlander et al. 1998] Jon Oberlander, Mick O’Donnell, Chris Mellish, and Alistair Knott.
Conversation in the museum: experiments in dynamic hypermedia with the intelligent
labelling explorer. The New Review of Hypermedia and Multimedia, 4:11–32, 1998.

[Ono et al. 2002] Kouichi Ono, Teruo Koyanagi, Mari Abe, and Masahiro Hori. XSLT
stylesheet generation by example with WYSIWYG editing. In 2002 Symposium on Appli-
cations and the Internet (SAINT 2002), Nara City, Japan, pages 150 – 159, 2002.

[Oorts et al. 2005] Nico Oorts, Filip Hendrickx, Tom Beckers, and Rik Van De Walle. Mul-
tichannel publication of interactive media content for Web Information Systems. In Fifth
International Conference on Web Engineering (ICWE2005), Sydney, 2005.

[O’Reilly 2006] Tim O’Reilly. What Is Web 2.0 - Design Patterns and Business Models for
the Next Generation of Software, http://www.oreillynet.com/, 2006.

[Oreizy et al. 1999] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis He-
imbigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and
Alexander L. Wolf. An Architecture-Based Approach to Self-Adaptive Software. IEEE
Intelligent Systems, 14(3):54–62, 1999.

[OSG 2005] OSGi alliance. About the OSGi Service Platform, Technical Whitepaper Revision
4.1, http://www.osgi.org/, 11 November 2005.

[Osterdiekhoff 2004] Brigitte Osterdiekhoff. Transcoding von Webinhalten. Informatik Spek-
trum, 27(5):448–452, 2004.

[Ovsiannikov et al. 2000] Ilia A. Ovsiannikov, Michael A. Arbib, and Thomas H. McNeill.
Annotation Technology. International Journal of Human-Computer Studies, 50(4):329–
362, 2000.

[Pastor et al. 2003] Oscar Pastor, Joan Fons, and Vicente Pelechano. OOWS: A Method
to Develop Web Applications from Web-Oriented Conceptual Models. In International
Workshop on Web Oriented Software Technology (IWWOST), pages 65–70, 2003.

[Patel-Schneider et al. 2004] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks.
OWL Web Ontology Language Semantics and Abstract Syntax. W3C Recommendation,
http://www.w3.org/TR/owl-semantics/, 10 February 2004.

[Paterno and Mancini 1999] Fabio Paterno and Cristiano Mancini. Designing Web Interfaces
Adaptable to Different Types of Use. In Workshop Museums and the Web, New Orleans,
LA, USA, 1999.

[Paterno et al. 1997] Fabio Paterno, Cristiano Mancini, and Silvia Meniconi. ConcurTask-
Trees: a Diagrammatic Notation for Specifying Task Models. In INTERACT 97, pages
362–366. Chapman & Hall, 1997.

[Petrelli et al. 1999] Daniella Petrelli, Elena Not, Marcello Sarini, Oliviero Stock, Carlo
Strapparava, and Massimo Zancanaro. HyperAudio: Location Awareness + Adaptivity.
In CHI’99, Conference on Human Factors in Computing Systems, pages 21–22, 1999.

[Pospischil et al. 2002] Günther Pospischil, Martina Umlauft, and Elke Michlmayr. Designing
LoL@, a Mobile Tourist Guide for UMTS. In Mobile HCI, pages 140–154, 2002.

c© Copyright TU Dresden, Zoltán Fiala 189

Bibliography

[Preciado et al. 2005] Juan Carlos Preciado, Marino Linaje Trigueros, F. Sanchez, and Sara
Comai. Necessity of Methodologies to model Rich Internet Applications. In 7th IEEE
International Symposium on Web Site Evolution (WSE2005), Budapest, Hungary, pages
7–13, September 2005.

[Puerta and Eisenstein 2002] Angel Puerta and Jacob Eisenstein. XIML: a common represen-
tation for interaction data. In 2002 Conference on Intelliegent User Interfaces (IUI2002),
pages 216–217, 2002.

[Röscheisen et al. 1995] Martin Röscheisen, Christian Morgensen, and Terry Winograd. In-
teraction Design for Shared World-Wide Web Annotations. In CHI 1995, pages 328–329,
May 1995.

[Rossi et al. 2001] Gustavo Rossi, Daniel Schwabe, and R.M. Guimaraes. Designing Person-
alized Web Applications. In WWW10, The Tenth International Conference on the World
Wide Web, Hong Kong, pages 275–284, 2001.

[Sauer and Engels 1999] S. Sauer and G. Engels. Extending UML for Modeling of Multimedia
Applications. In IEEE Symposium on Visual Languages, Tokyo, Japan, page 88. ACM
Press, 1999.

[Schaefer et al. 2002] Robbie Schaefer, Andreas Dangberg, and Wolfgang Mueller.
RDL/TT-A Description Language for Profile-Dependent Transcoding of XML Docu-
ments. In ITEA Workshop on Virtual Home Environments (VHE), Paderborn, Germany,
February 2002.

[Schilit et al. 1994] Bill Schilit, Norman Adams, , and Roy Want. Context-aware computing
applications. In IEEE Workshop on Mobile Computing Systems and Applications, Santa
Cruz, California, pages 85–90. IEEE Computer Society Press, 1994.

[Schmidt et al. 1999] Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo
Tuomela, Kristof Van Laerhoven, and Walter Van de Velde. Advanced Interaction in Con-
text. In First International Symposium on Handheld and Ubiquitous Computing (HUC’99),
Karlsruhe, Germany, pages 89–101, 1999.

[Schwabe and de Moura 2003] Daniel Schwabe and Sabrina Silva de Moura. Interface De-
velopment for Hypermedia Applications in the Semantic Web. In WebMedia and LA-Web
2004 Joint Conference 10th Brazilian Symposium on Multimedia and the Web 2nd Latin
American Web Congress, pages 106–113. IEEE Computer Society, 2003.

[Schwabe et al. 1996] Daniel Schwabe, Gustavo Rossi, and Simone D. J. Barbosa. Systematic
Hypermedia Application Design with OOHDM. In Hypertext ’96, The Seventh ACM
Conference on Hypertext, Washington DC, pages 116–128. ACM, March 1996.

[Schwabe et al. 1999] Daniel Schwabe, Rita de Almeida Pontes, and Isabela Moura.
OOHDM-Web: An Environment for Implementation of Hypermedia Applications in the
WWW. SigWEB Newsletter, 8(2), 1999.

[Schwinger and Koch 2003] Wieland Schwinger and Nora Koch. Modellierung von Web-
Anwendungen. In Web Engineering: Systematische Entwicklung von Web-Anwendungen,
pages 49–76. 2003.

190 c© Copyright TU Dresden, Zoltán Fiala

Bibliography

[Segor and Gaedke 2000] Christian Segor and Martin Gaedke. Crossing the Gap - From
Design to Implementation in Web-Application Development. In Proceedings of Information
Resources Management Association International Conference, Anchorage, Alaska, USA,
2000.

[Shen 1996] Wei-Min Shen. An Efficient Algorithm for Incremental Learning of Decision
Lists. Technical Report USC-ISI-96-012, Information Sciences Institute, University of
Southern California, 1996.

[Shneiderman and Kearsley 1989] Ben Shneiderman and Greg Kearsley. Hypertext Hands-
On!: An Introduction to a New Way of Organizing and Accessing Information. Addison
Wesley, 1989. ISBN: 0-201-15171-5.

[Shneiderman 1987] Ben Shneiderman. User Interface Design for the Hyperties Electronic
Encyclopedia. In Hypertext 1987: Chapel Hill, North Carolina, USA, pages 189–194.
ACM, 1987.

[Smith et al. 1998] John R. Smith, Rakesh Mohan, and Chung-Sheng Li. Transcoding In-
ternet Content for Heterogeneous Client Devices. In IEEE International Symposium on
Circuits and Systems (ISCAS ’98), volume 3, pages 599–602, 1998.

[Smyth et al. 2002] Barry Smyth, Keith Bradley, and Rachael Rafter. Personalization tech-
niques for online recruitment services. Communications of the ACM, 45(5):39–40, 2002.

[Spivey 1989] J. Michael Spivey. The Z Notation. Prentice-Hall International, Hertfordshire,
England, 1989. ISBN: 0-139-78529-9.

[Starke 2005] Susett Starke. Konzeption eines adaptiven Web-Informationssystems zur
Präsentation multimedialer Studienergebnisse. Prediploma thesis, Technische Universität
Dresden, July 2005.

[Steindl et al. 2003] Christoph Steindl, Rudolf Ramler, and Josef Altmann. Testen von Web-
Anwendungen. In Web Engineering: Systematische Entwicklung von Web-Anwendungen,
pages 161–186. 2003.

[Swoboda and Wadge 2000] Paul Swoboda and William W. Wadge. Vmake, ISE and IRCS:
General tools for the intensionalization of software systems. In Intensional Programming
II, World-Scientific, 2000.

[Szyperski 1998] Clemens Szyperski. Component Software, Beyond Object-Oriented Program-
ming. Addison-Wesley, 1998. ISBN: 0-201-17888-5.

[Thalheim and Düsterhöft 2001] Bernhard Thalheim and Antje Düsterhöft. SiteLang: Con-
ceptual Modeling of Internet Sites. In 20th International Conference on Conceptual Mod-
eling (ER 2001), Yokohama, Japan, pages 179–192, 2001.

[Tietz 2006] Vincent Tietz. Entwicklung template-basierter adaptiver Web-Anwendungen
mit dem AMACONTBuilder. Prediploma thesis, Technische Universität Dresden, June
2006.

[Tochtermann and Dittrich 1996] Klaus Tochtermann and Gisbert Dittrich. The Dortmund
Family of Hypermedia Models - Concepts and their Application. Journal of Universal
Computer Science, 2(1):34–55, 1996.

c© Copyright TU Dresden, Zoltán Fiala 191

Bibliography

[Tsalgatidou and Veijalainen 2000] Aphrodite Tsalgatidou and Jari Veijalainen. Mobile Elec-
tronic Commerce: Emerging Issues. In First International Conference on Electronic Com-
merce and Web Technologies (EC-Web 2000), London, UK, pages 477–486, 2000.

[Ulbricht 2006] Dirk Ulbricht. Web-basierte Kollaboration mobiler Endgeräte. Prediploma
thesis, Technische Universität Dresden, April 2006.

[Ungar and Smith 1987] David Ungar and Randall B. Smith. Self: The Power of Simplic-
ity. In Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’87), Orlando, Florida, pages 227–242, 1987.

[@VCSProject] Virtual Collaboration Services (VCS) project homepage. http://www-
mmt.inf.tu-dresden.de/Projekte/. Date of access: 30th July 2006.

[Vdovjak et al. 2003] Richard Vdovjak, Flavius Frasincar, Geert-Jan Houben, and Peter
Barna. Engineering Semantic Web Information Systems in Hera. Journal of Web En-
gineering, Rinton Press, 2(1&2):003–026, 2003.

[Wadge and Schraefel 2001] William W. Wadge and Monica M.C. Schraefel. A Complemen-
tary Approach for Adaptive and Adaptable Hypermedia: Intensional Hypertext. In Hyper-
media: Openness, Structural Awareness and Adaptivity - International Workshop OHS-7,
Aarhus, Denmark, pages 327–334, 2001.

[Wadge et al. 1998] William W. Wadge, Gord Brown, Monica M.C. Schraefel, and Taner
Yildrim. Intensional HTML. In 4th International Workshop on Principles of Digital Doc-
ument Processing (PODDP’98), Saint Malo, France, pages 128–139, 1998.

[Wadge 2000] William W. Wadge. Intensional Markup Language. In Third International
Workshop on Distributed Communities on the Web (DCW2000), Quebec City, Canada,
pages 82–89, 2000.

[@WebRatio] WebRatio product homepage. http://www.webratio.com/. Date of access:
30th July 2006.

[Wehner and Lorz 2001] Frank Wehner and Alexander Lorz. Developing Modular and Adapt-
able Courseware Using TeachML. In ED-MEDIA, World Conference on Educational Mul-
timedia, Hypermedia and Telecommunications, Tampere, Finland, 2001.

[Westbomke and Dittrich 2002] Jörg Westbomke and Gisbert Dittrich. Towards an XML-
based Implementation of Structured Hypermedia Documents. Journal of Universal Com-
puter Science, 8(10):944–956, 2002.

[Westbomke 2001] Jörg Westbomke. XML-basierte Implementierung struturierter Hyper-
textdokumente. Dissertation. Shaker Verlag, Aachen, 2001. ISBN: 3-826-59986-1.

[Wir 2001] Wireless Application Group, WAP Forum. User Agent Profile Specification, 2001.

[Wu 2001] Hongjing Wu. Reference Architecture for Adaptive Hypermedia Applications. PhD
thesis, Technische Universiteit Eindhoven, 2001.

[@XMLSpy] XMLSpy product homepage. http://www.altova.com/. Date of access: 30th
July 2006.

192 c© Copyright TU Dresden, Zoltán Fiala

Bibliography

[Yankelovich et al. 1988] Nicole Yankelovich, Bernard J. Haan, Norman K. Meyrowitz, and
Steven M. Drucker. Intermedia: The Concept and the Construction of a Seamless Infor-
mation Environment. IEEE Computer, 21(1):81–96, 1988.

[Yee 1998] Ka-Ping Yee. CritLink: Better Hyperlinks for the WWW,
http://crit.org/˜ping/ht98.html, 1998.

[Yesilada et al. 2004] Yeliz Yesilada, Simon Harper, Carole Goble, and Robert Stevens.
Screen Readers Cannot See - Ontology Based Semantic Annotation for Visually Impaired
Web Travellers. In Fourth International Conference on Web Engineering (ICWE2004),
Munich, pages 445–458. Springer LNCS 3140, 2004.

[Ziegeler and Langham 2002] Carsten Ziegeler and Matthew Langham. Cocoon: Building
XML Applications. Sams Publishing, 2002. ISBN: 0-735-71235-2.

[Ziegert et al. 2004] Thomas Ziegert, Markus Lauff, and Lutz Heuser. Device Independent
Web Applications – The Author Once - Display Everywhere Approach. In Fourth Inter-
national Conference on Web Engineering (ICWE2004), Munich, pages 244–255. Springer
LNCS 3140, July 2004.

c© Copyright TU Dresden, Zoltán Fiala 193

Bibliography

194 c© Copyright TU Dresden, Zoltán Fiala

List of Publications

[Fiala et al. 2003a] Zoltán Fiala, Michael Hinz, Klaus Meissner, and Frank Wehner. A
Component-based Approach for Adaptive Dynamic Web Documents. In Twelfth Inter-
national Conference on the World Wide Web (WWW2003), Poster session. ACM, May
2003.

[Fiala et al. 2003b] Zoltán Fiala, Michael Hinz, Klaus Meißner, and Frank Wehner. A
Component-based Approach for Adaptive Dynamic Web Documents. Journal of Web
Engineering, Rinton Press, 2(1&2):058–073, September 2003.

[Fiala and Meissner 2003] Zoltán Fiala and Klaus Meissner. Annotating Virtual Web Docu-
ments with DynamicMarks. In Workshop XML Technologien für das Semantic Web (XSW
2003), Berliner XML Tage, pages 67–77, October 2003.

[Fiala et al. 2003] Zoltán Fiala, Michael Hinz, and Frank Wehner. An XML-based Compo-
nent Architecture for Personalized Adaptive Web Applications. In Workshop Personal-
isierung mittels XML-Technologien, Berliner XML Tage, pages 370–378, October 2003.

[Fiala et al. 2004] Zoltán Fiala, Michael Hinz, Geert-Jan Houben, and Flavius Frasincar.
Design and Implementation of Component-based Adaptive Web Presentations. In 19th
Symposium on Applied Computing (SAC2004), Nicosia, Cyprus, pages 1698–1704. ACM
Press, March 2004.

[Frasincar et al. 2004] Flavius Frasincar, Geert-Jan Houben, Peter Barna, and Zoltán Fiala.
Adaptation and Reuse in Web Information Systems. In ITCC2004, International Confer-
ence on Information Technology, pages 387–291. IEEE Computer Society, April 2004.

[Fiala et al. 2004] Zoltán Fiala, Flavius Frasincar, Michael Hinz, Geert-Jan Houben, Peter
Barna, and Klaus Meissner. Engineering the Presentation Layer of Adaptable Web Infor-
mation Systems. In Fourth International Conference on Web Engineering (ICWE2004),
Munich, pages 459–472. Springer LNCS 3140, July 2004.

[Hinz et al. 2004] Michael Hinz, Zoltán Fiala, and Frank Wehner. Personalization-Based
Optimization of Web Interfaces for Mobile Devices. In 6th International Symposium on
Mobile Human-Computer Interaction - Mobile HCI 2004, Glasgow, UK, pages 204–215.
Springer LNCS 3160, September 13-16 2004.

[Hinz and Fiala 2004] Michael Hinz and Zoltán Fiala. AMACONT: A System Architecture
for Adaptive Multimedia Web Applications. In Workshop XML Technologien für das Se-
mantic Web (XSW 2004), Berliner XML Tage, October 2004.

[Hinz and Fiala 2005] Michael Hinz and Zoltán Fiala. Context Modeling for Device- and
Location-Aware Mobile Web Applications. In 3rd International Conference on Pervasive

195

List of Publications

Computing (Pervasive 2005), Workshop: PERMID 2005, München, pages 204–215, May
8-13 2005.

[Fiala and Houben 2005] Zoltán Fiala and Geert-Jan Houben. A Generic Transcoding Tool
for Making Web Applications Adaptive. In The 17th Conference on Advanced Information
Systems Engineering (CAiSE’05), pages 15–20. FEUP, June 2005.

[Houben et al. 2005] Geert-Jan Houben, Zoltán Fiala, Kees ven der Sluijs, and Michael
Hinz. Building Self-managing Web Information Systems from Reusable Components. In
First International Workshop on Adaptive and Self-Managing Enterprise Applications (AS-
MEA’05), pages 53–67. FEUP, June 2005.

[Hinz and Fiala 2005] Michael Hinz and Zoltán Fiala. Distribution and Synchronization of
Context Modeling Mechanisms between Servers and Clients on the Web. In Eigth Interna-
tional Conference on Wireless Personal Multimedia Communication (WPMC’05), Aalborg,
Denmark, September 2005.

[Fiala et al. 2005] Zoltán Fiala, Michael Hinz, and Klaus Meissner. Developing Component-
based Adaptive Web Applications with the AMACONTBuilder. In 7th IEEE International
Symposium on Web Site Evolution (WSE2005), Budapest, Hungary, pages 39–45, Septem-
ber 2005.

[Casteleyn et al. 2006a] Sven Casteleyn, Zoltán Fiala, Geert-Jan Houben, and Kees van der
Sluijs. Considering Additional Adaptation Concerns in the Design of Web Applications.
In Adaptive Hypermedia and Adaptive Web-Based Systems 2006 (AH2006). Springer, June
2006.

[Casteleyn et al. 2006b] Sven Casteleyn, Zoltán Fiala, Geert-Jan Houben, and Kees van der
Sluijs. From Adaptation Engineering Towards Aspect-Oriented Context-Dependency. In
Fifteenth International Conference on the World Wide Web (WWW2006), Poster session.
ACM, May 2006.

[Hinz et al. 2006] Michael Hinz, Stefan Pietschmann, and Zoltán Fiala. A Framework for
Context Modeling in Adaptive Web Applications. In IADIS International Conference
WWW/Internet 2006, Murcia Spain, October 2006.

196 c© Copyright TU Dresden, Zoltán Fiala

List of Abbreviations

ADV Abstract Data View

AHAM Adaptive Hypermedia Application Model

AHS Adaptive Hypermedia System

API Application Programming Interface

AWIS Adaptive Web Information System

cHTML Compact HTML

DOM Document Object Model

DTD Document Type Definition

GAC Generic Adaptation Component

HTML HyperText Markup Language

JSP Java Server Pages

MPEG Motion Pictures Expert Group

OOHDM Object-Oriented Hypermedia Design Model

OWL Web Ontology Language

RDFS Resource Description Framework Schema

RDF Resource Description Framework

RMM Relationship Management Methodology

SeRQL Sesame RDF Query Language

SMIL Synchronized Multimedia Integration Language

SQL Structured Query Language

UML Unified Modeling Language

W3C World Wide Web Consortium

WCML WebComposition Markup Language

WebML Web Modeling Language

197

List of Publications

WIS Web Information System

WML Wireless Markup Language

WSDM Web Site Design Method

WWW World Wide Web

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

XPath XML Path Language

XSL(T) Extensible Stylesheet Language (Transformations)

198 c© Copyright TU Dresden, Zoltán Fiala

Index

A

Abstract Data Views (ADV) 59
active documents . 52
adaptation . 74
adaptation condition . 138
adaptation context data (ACD) 147
adaptation engineering.18, 40
Adaptation Specification Language (ASL) 61
Adaptive Educational Hypermedia

System (AEHS) 34
Adaptive Hypermedia . 29

adaptability . 29
adaptivity .30

Adaptive Hypermedia System (AHS) 29
Adaptive Information Retrieval System . . . 34
Adaptive Online Information System 35
adaptive styleguiding . 33
Adaptive Web Information System 35
AHA!. .34, 37
AHAM . 36 ff.

adaptive engine . 37
domain model . 36
pedagogical rules . 37
teaching model . 37
user model . 36

AMACONT. 19
AMACONTBuilder 108–120

CSS editor . 117
graph editor . 116
hyperlink editor . 116
image editor . 111
layout editor . 117
profile browser . 111
structure editor . 114
subcomponent editor 115
XML editor . 118

Amsterdam Reference Model 28
Annotation-based Web transcoding140
Aspect-Oriented Programming 174
AWIS . 96

B

base component . 52

C

CC/PP. .86, 147
CDL4 . 90
CHAMELEON . 47

CHAMELEONBuilder 48
TeachML . 47

cHTML . 81
Cocoon publishing framework 50, 86, 156

AbstractDOMTransformer 156
complex slice . 100
component . 68
Component-based Software Engineering . . 19
Component-based Web Engineering 43
Concurrent Task Tree (CTT) 60
context .31
context model . 86, 138
context modeling . 89
context profile .86

device profile . 87
identification profile 87
location profile . 87

context-awareness . 31
contextuality . 41
CONTIGRA. .46 f.

Audio3D . 46
Behavior3D . 47

CSS. .50, 74, 107, 117

D

derived component . 52
design method . 42, 55, 96
design model . 42, 55
Dexter reference model26 ff.

anchoring . 26
presentation specifications 26
run-time layer . 27
storage layer . 26

199

Index

within-component layer 27
document components 67–84

component templates.82
content unit components 71
document components.72
hyperlink components 73
iterative component templates83
media components 70
selection method . 76

Document Type Definition (DTD).44
Dortmund reference model 26
droptext . 45
dynamic adaptation . 29
DynamicMarks . 94

E

embedded software . 52
entity-relationship (E-R) model 57, 62
event-condition-action (ECA) rule 61 f.

F

Flash . 171
frame-based techniques 32

G

Generic Adaptation Component 137–163
adaptation context data (ACD) 147
adaptation rule . 147
appearance rule . 149
element filter rule 149
inclusion rule . 150
link wrapper rule 152
paginator rule .154
replacement rule . 151
rule manager .156
sorting rule . 153
update rule . 154

H

Hera . 63, 96–108
appearance condition.101
application design . 99
conceptual design . 97
presentation design.104
RDF-based PM schema formalization122

Hera-AMACONT . 96
HMDoc . 44

component . 44
document node. .44
hyperdocument . 44
subdocument. .44
view . 44

HTML . 92, 94
Hypercard. .26
hypermedia . 25
hypermedia reference model 26
hypertext . 25
Hyperties . 26

I

Intensional Hypertext . 45
IHTML . 45
IML . 45
intensional tags . 45
ISE . 46

Interbook . 34
Intermedia . 26
invasive composition. .53

J

Java . 156
Java Portlet Specification.51
Java Server Pages (JSP).59
Java3D. .47
JDOM . 119, 156
JSR 168 specification . 51

K

KBS Hyperbook. .34

L

layout managers . 79, 122
BorderLayout . 79
BoxLayout . 79 f.
GridTableLayout . 79
OverlayLayout . 79

M

memex . 25
model-based Web design method 40
model-based Web design methods 55
Model-based Web Engineering 42, 55
Model-Driven Software Engineering.42
MPEG-21 . 50

200 c© Copyright TU Dresden, Zoltán Fiala

Index

MPEG-4 . 47, 171
MPEG-7 . 71
Munich Reference Model 28

N

Natural Language Generation (NLG) 32
Notecard . 26

O

Object Oriented Web Solution (OOWS) . . 57
Object Role Modeling (ORM) 61
Object-Oriented Hypermedia Design

Method (OOHDM) 58
Object-Oriented-Hypermedia (OO-H) 57
OntoWeaver . 57
OntoWebber . 57
orphan annotations . 163

P

pagination .49, 154
parameter substitution.45, 78
Polish Notation (PN). .76
portal container . 52
portal page .51
portals . 51
portlet life-cycle . 52
portlets . 51

R

RDF(S) 58, 63, 86, 97, 147
RDL/TT. .140
recommender system . 33
reference model . 26
Relationship Management Methodology

(RMM) . 57
requirements analysis .40
requirements engineering 58
requirements engineering (RE) 40
Rich Internet Applications (RIA).172
Rich Media Applications 172
RIML . 49
RMCase. .57
robust annotation positioning 163

S

Scalable Vector Graphics (SVG) 68
SEAL . 57

self-adaptation . 77
self-adaptive. .77
Semantic Web 57 f., 63, 97
Semantic Web Information System (SWIS)57
Sesame Framework . 157
Sesame RDF Query language (SeRQL) . . 157
SHDM . 58
simple slice. .100
slice . 57, 100
SMIL. 50, 68
software component . 68
SQL. .82
staged active documents53
staged architecture . 53
static adaptation . 29
stereotype . 46
storyboards . 40
stretch text . 32, 45

T

TELLIM . 75
transclusion . 53
transcoding . 140
transconsistency .53
transversion links. .46
Travel Ontology . 140
Trellis . 26

U

UML. 58
UML-based Web Engineering (UWE).57
use cases . 40
User Interface Markup Language (UIML).79
user model . 30, 36

overlay model . 30
stereotype model . 30

user profile . 86

V

Vannevar Bush . 25

W

Wap User Agent Profile (UAProf) 87
WCML . 43, 59
Web annotation . 94
Web Configuration Management.42
Web design method.18, 40, 42, 55, 96

c© Copyright TU Dresden, Zoltán Fiala 201

Index

Web design model . 42, 55
Web Engineering . 18, 39
Web engineering life-cycle 40
Web Information System (WIS) 29
Web Intermediaries (WBI) 140
Web maintenance . 42
Web Modeling Language 61
Web Ontology Language (OWL) 58
Web Site Design Method (WSDM) 59
Web testing . 41
Web transcoding . 140
Web transcoding heuristics 140

abbreviations . 140
advertisement removal 140
audio/video transcoding.140
first sentence elision 140
image reduction . 140
outlining . 140
table transform . 158

WebComposition Component Model 43
WebRatio . 63
WML . 81
World Wide Web. 28

deep Web . 29
surface Web . 29

World Wide Web Consortium (W3C)74
WSRP . 52

X

X3D. 42, 46
Xanadu . 25
XForms . 49, 71
XHTML . 49 f., 81
XIML . 79
XiMPF document model 50
XML . 42 f., 46, 68 f.
XML Schema . 70
XPath .74, 147
XPointer . 74
XSLT . 76
XWMF . 57

202 c© Copyright TU Dresden, Zoltán Fiala

Curriculum Vitae

Zoltán Fiala was born on 19th March 1977 in Budapest, Hungary. After completing his pre-
university education, he studied computer science at the Budapest University of Technology
and Economics. Within the scope of a scholarship from Deutsche Telekom, he spent the last
year of his studies at Dresden University of Technology (Technische Universität Dresden -
TUD), Germany. He graduated with a diploma thesis on Web Content Management Systems,
supervised by Prof. Dr.-Ing. Klaus Meißner.

After graduation, he worked as a PhD student at the Graduiertenkolleg “Werkzeuge zum
effektiven Einsatz paralleler und verteilter Rechnersysteme” at the Department of Computer
Science of Dresden University of Technology. His research was carried out within the scope of
the AMACONT project, with a special accent on the authoring process of component-based,
personalized, ubiquitous Web applications. Since September 2004 he has been working as a
research assistant at the Multimedia Technology Group of Dresden University of Technology.

203

